记一道CTF题—PHP双MD5加密+”SALT“弱碰撞绕过
通过分析源代码并找到绕过限制的方法,从而获取到flag!
部分源码:
<?php
$name=_POST['username'];
$pass=encode(_POST['password']);
$admin_user = "admin";
$admin_pw = get_hash("0e260265122865008095838959784793");
if ($name == $admin_user && $pass == $admin_pw){echo $flag;
}
function get_hash($hash) {return preg_replace("/[^0-9a-f]/","",$hash);
}
function encode($str) {return get_hash(md5(md5($str) . "SALT"));
}
分析代码:
获取用户输入username,password。
如果用户为admin,
密码经过md5(md5($str) . "SALT")加密后是0e260265122865008095838959784793,则显示flag
(这里0e开头且后面全是数字,且==判断,可以用0e绕过)
所以现在主要是需要找到一个符合要求的password,那就需要爆破了。
编写脚本, 爆破脚本如下:(由于字符集大,爆破时间稍长)
import hashlib # 导入哈希库(用于计算MD5)
import itertools # 导入迭代工具(用于生成密码组合)
import string # 导入字符串工具(用于获取字母数字字符集)def get_hash(h):"""清理哈希值,只保留十六进制字符(0-9,a-f)对应PHP的:preg_replace("/[^0-9a-f]/","",$hash)"""return ''.join(c for c in h if c in '0123456789abcdef')def encode(pwd):"""双重MD5加盐哈希函数对应PHP的:md5(md5($str) . "SALT")"""# 第一层MD5哈希first_md5 = hashlib.md5(pwd.encode()).hexdigest()# 拼接固定盐值with_salt = first_md5 + "SALT"# 第二层MD5哈希并清理结果return get_hash(hashlib.md5(with_salt.encode()).hexdigest())def find_magic_hash(max_length=6):"""查找魔术哈希的主函数max_length: 尝试的密码最大长度(默认6位)"""# 定义搜索的字符集(所有字母+数字)chars = string.ascii_letters + string.digits# 目标管理员哈希值(来自被攻击系统)admin_hash = "0e260265122865008095838959784793"print("正在搜索魔术哈希...")# 遍历所有可能的密码长度(从1到max_length)for length in range(1, max_length + 1):# 生成所有可能的字符组合(笛卡尔积)for candidate in itertools.product(chars, repeat=length):# 将元组组合转为字符串pwd = ''.join(candidate)# 计算该密码的哈希值hashed = encode(pwd)# 检查1:是否完全匹配目标哈希if hashed == admin_hash:print(f"找到精确匹配!密码: {pwd}")return pwd# 检查2:是否符合魔术哈希模式(0e开头后面全是数字)# PHP弱类型比较中,这类哈希会被视为0if hashed.startswith('0e') and hashed[2:].isdigit():print(f"找到魔术哈希: {pwd} -> {hashed}")# 在PHP的==比较中,这将通过验证return pwdprint("在搜索范围内未找到魔术哈希")return Noneif __name__ == "__main__":# 执行查找found = find_magic_hash()if found:# 输出可用于登录的密码print(f"使用此密码登录: '{found}' 配合用户名 'admin'")
等待一段时间后,输入结果
![]()
v2ZuN
-md5加密-> efaf929f56d048f67d4c5ddaf347d173
-加盐-> efaf929f56d048f67d4c5ddaf347d173SALT
-再md5加密-> 0e876767955247762754333885824541
成功拿到flag。
相关文章:
记一道CTF题—PHP双MD5加密+”SALT“弱碰撞绕过
通过分析源代码并找到绕过限制的方法,从而获取到flag! 部分源码: <?php $name_POST[username]; $passencode(_POST[password]); $admin_user "admin"; $admin_pw get_hash("0e260265122865008095838959784793");…...
Text2SQL推理类大模型本地部署的解决方案
大家好,我是herosunly。985院校硕士毕业,现担任算法工程师一职,获得CSDN博客之星第一名,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得多项AI顶级比赛的Top名次,其中包括阿里云、科大讯飞比赛第一名…...
机器学习的一百个概念(3)上采样
前言 本文隶属于专栏《机器学习的一百个概念》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢! 本专栏目录结构和参考文献请见[《机器学习的一百个概念》 ima 知识库 知识库广场搜索&…...
Electron应用生命周期全解析:从启动到退出的精准掌控
一、Electron生命周期的核心特征 1.1 双进程架构的生命周期差异 Electron应用的生命周期管理具有明显的双进程特征: 主进程生命周期:贯穿应用启动到退出的完整周期渲染进程生命周期:与浏览器标签页相似但具备扩展能力进程间联动周期&#…...
AI渗透测试:网络安全的“黑魔法”还是“白魔法”?
引言:AI渗透测试,安全圈的“新魔法师” 想象一下,你是个网络安全新手,手里攥着一堆工具,正准备硬着头皮上阵。这时,AI蹦出来,拍着胸脯说:“别慌,我3秒扫完漏洞࿰…...
分秒计数器设计
一、在VsCode中写代码 目录 一、在VsCode中写代码 二、在Quartus中创建工程与仿真 1、建立工程项目文件md_counter 2、打开项目文件,创建三个目录 3、打开文件trl,创建md_counter.v文件 4、打开文件tb,创建md_counter_tb.v文件 5、用VsCod…...
Flink介绍——发展历史
引入 我们整个大数据处理里面的计算模式主要可以分为以下四种: 批量计算(batch computing) MapReduce Hive Spark Flink pig流式计算(stream computing) Storm SparkStreaming/StructuredStreaming Flink Samza交互计…...
12. STL的原理
目录 1. 容器、迭代器、算法 什么是迭代器? 迭代器的作用? 迭代器的类型? 迭代器失效 迭代器的实现细节: 2. 适配器 什么是适配器? 适配器种类: 3. 仿函数 什么是仿函数? 仿函数与算法和容器的…...
OSPFv3 的 LSA 详解
一、复习: OSPFv3 运行于 IPv6 协议上,所以是基于链路,而不是基于网段,它实现了拓扑和网络的分离。另外,支持一个链路上多个进程;支持泛洪范围标记和泛洪不识别的报文(ospfv2 的行为是丢弃&…...
python 原型链污染学习
复现SU的时候遇到一道python原型链污染的题,借此机会学一下参考: 【原型链污染】Python与Jshttps://blog.abdulrah33m.com/prototype-pollution-in-python/pydash原型链污染 文章目录 基础知识对父类的污染命令执行对子类的污染pydash原型链污染打污染的…...
Windows 图形显示驱动开发-WDDM 2.4功能-GPU 半虚拟化(十一)
注册表设置 GPU虚拟化标志 GpuVirtualizationFlags 注册表项用于设置半虚拟化 GPU 的行为。 密钥位于: DWORD HKLM\System\CurrentControlSet\Control\GraphicsDrivers\GpuVirtualizationFlags 定义了以下位: 位描述0x1 为所有硬件适配器强制设置…...
入栈操作-出栈操作
入栈操作 其 入栈操作 汇编代码流程解析如下: 出栈操作 其 出栈操作 汇编代码流程解析如下:...
C++ 多态:面向对象编程的核心概念(一)
文章目录 引言1. 多态的概念2. 多态的定义和实现2.1 实现多态的条件2.2 虚函数2.3 虚函数的重写/覆盖2.4 虚函数重写的一些其他问题2.5 override 和 final 关键字2.6 重载/重写/隐藏的对比 3. 纯虚函数和抽象类 引言 多态是面向对象编程的三大特性之一(封装、继承、…...
传统策略梯度方法的弊端与PPO的改进:稳定性与样本效率的提升
为什么传统策略梯度方法(如REINFORCE算法)在训练过程中存在不稳定性和样本效率低下的问题 1. 传统策略梯度方法的基本公式 传统策略梯度方法的目标是最大化累积奖励的期望值。具体来说,优化目标可以表示为: max θ J ( θ )…...
我的机器学习学习之路
学习python的初衷 • hi,今天给朋友们分享一下我是怎么从0基础开始学习机器学习的。 • 我是2023年9月开始下定决心要学python的,目的有两个,一是为了提升自己的技能和价值,二是将所学的知识应用到工作中去,提升工作…...
Spring Boot 的自动装配
Spring Boot 的自动装配(Auto Configuration)是其核心特性之一,通过智能化的条件判断和配置加载机制,极大简化了传统 Spring 应用的配置复杂度。其原理和实现过程可概括为以下几个关键点: 一、核心触发机制:…...
Python数据可视化-第3章-图表辅助元素的定制
教材 本书为《Python数据可视化》一书的配套内容,本章为第3章-图表辅助元素的定制 本章主要介绍了图表辅助元素的定制,包括认识常用的辅助元素、设置坐标轴的标签、设置刻度范围和刻度标签、添加标题和图例、显示网格、添加参考线和参考区域、添加注释文…...
`git commit --amend` 详解:修改提交记录的正确方式
文章目录 git commit --amend 详解:修改提交记录的正确方式1. 修改提交信息2. 补充遗漏的文件3. 结合 --amend 进行交互式修改4. 已推送提交的修改总结 git commit --amend 详解:修改提交记录的正确方式 git commit --amend 用于修改最近一次的提交&…...
Linux系统下C语言fork函数使用案例
一、fork函数的作用 生成一个子进程,异步执行某个任务; 二、子进程的作用 1、子进程能复制一份父进程的变量、函数; 2、子进程可以和父进程同时并发执行; 函数语法: pid_t fork() 说明:调用后返回一个进程…...
springboot实现异步导入Excel的注意点
springboot实现异步导入Excel 需求前言异步导入面临的问题实现异步如何导入大Excel文件避免OOM?异步操作后,如何通知导入结果?如何加快导入效率?将导入结果通知给用户后,如何避免重复通知? 优化点完结撒花&…...
Linux练习——有关硬盘、联网、软件包的管理
1、将你的虚拟机的网卡模式设置为nat模式,给虚拟机网卡配置三个主机位分别为100、200、168的ip地址 #使用nmtui打开文本图形界面配置网络 [rootrhcsa0306 ~]# nmtui #使用命令激活名为 ens160 的 NetworkManager 网络连接 [rootrhcsa0306 ~]# nmcli c up ens160 #通…...
论文阅读:GS-Blur: A 3D Scene-Based Dataset for Realistic Image Deblurring
今天介绍一篇 2024 NeurIPS 的文章,是关于真实世界去模糊任务的数据集构建的工作,论文作者来自韩国首尔大学 Abstract 要训练去模糊网络,拥有一个包含成对模糊图像和清晰图像的合适数据集至关重要。现有的数据集收集模糊图像的方式主要有两…...
经典动态规划问题:爬楼梯的多种解法详解
引言 今天我们要解决一个经典的算法问题——爬楼梯问题。这个问题看似简单,但蕴含了多种解法,从递归到动态规划,再到组合数学,每种方法都有其独特的思路和优化方式。本文将详细讲解四种解法,并通过代码和图解帮助大家…...
Kubernetes深度解析:云原生时代的容器编排引擎
一、背景与演进 1. 容器革命的必然产物 Kubernetes(K8s)诞生于2014年,是Google基于其内部Borg系统的开源实现。在传统单体应用向微服务架构转型的浪潮中,容器技术(如Docker)解决了应用打包和环境隔离问题…...
Cocos Creator Shader入门实战(七):RGB不同算法效果的实现,及渲染技术、宏定义、属性参数的延伸配置
引擎:3.8.5 您好,我是鹤九日! 回顾 上篇文章,讲解了Cocos Shader如何通过setProperty动态设置材质的属性,以及设置属性时候的一些注意事项,比如: 一、CCEffect部分properties参数的设定后&…...
leetcode102 二叉树的层次遍历 递归
(1) 找出重复的子问题。 层次遍历是每一层的节点从左到右的遍历,所以在遍历的时候我们可以先遍历左子树,再遍历右子树。 需要注意的是,在遍历左子树或者右子树的时候,涉及到向上或者向下遍历,为了让递归的过程中的同…...
Netty源码—10.Netty工具之时间轮二
大纲 1.什么是时间轮 2.HashedWheelTimer是什么 3.HashedWheelTimer的使用 4.HashedWheelTimer的运行流程 5.HashedWheelTimer的核心字段 6.HashedWheelTimer的构造方法 7.HashedWheelTimer添加任务和执行任务 8.HashedWheelTimer的完整源码 9.HashedWheelTimer的总结…...
算法学习记录:递归
递归算法的关键在于回复现场,dfs()函数返回值、结束条件、它的作用。 目录 1.综合练习 2. 二叉树的深搜 1.综合练习 39. 组合总和 - 力扣(LeetCode) 关键在画出的决策树当中,前面使用过的2、3,…...
启山智软实现b2c单商户商城对比传统单商户的优势在哪里?
启山智软实现 B2C 单商户商城具有以下对比优势: 技术架构方面 先进的框架选型:基于 SpringCloud 等主流框架开发,是百万真实用户沉淀并检验的商城系统,技术成熟稳定,能应对高并发场景,保证系统在大流量访…...
可发1区的超级创新思路(python\matlab实现):MPTS+Lconv+注意力集成机制的Transformer时间序列模型
首先声明,该模型为原创!原创!原创!且该思路还未有成果发表,感兴趣的小伙伴可以借鉴! 应用场景 该模型主要用于时间序列数据预测问题,包含功率预测、电池寿命预测、电机故障检测等等。 一、模型整体架构(本文以光伏功率预测为例) 本模型由多尺度特征提取模块(MPTS)…...
