Python 深度学习 第8章 计算机视觉中的深度学习 - 卷积神经网络使用实例
Python 深度学习 第8章 计算机视觉中的深度学习 - 卷积神经网络使用实例
内容概要
第8章深入探讨了计算机视觉中的深度学习,特别是卷积神经网络(convnets)的应用。本章详细介绍了卷积层和池化层的工作原理、数据增强技术、预训练模型的特征提取和微调方法。通过本章,读者将掌握如何使用深度学习解决图像分类问题,尤其是在小数据集上的应用。

主要内容
-
卷积神经网络(Convnets)
- 卷积操作:学习局部模式,具有平移不变性。
- 池化操作:通过下采样减少特征图的尺寸,提取重要特征。
- 卷积神经网络的结构:由卷积层、池化层和全连接层组成。
-
数据增强
- 数据增强技术:通过随机变换生成更多训练数据,减少过拟合。
- Keras中的数据增强层:如RandomFlip、RandomRotation和RandomZoom。
-
预训练模型的使用
- 特征提取:使用预训练模型的卷积基提取特征,然后训练新的分类器。
- 微调:解冻预训练模型的顶部几层,与新添加的分类器一起训练。
-
在小数据集上训练卷积神经网络
- 数据准备:使用Keras的
image_dataset_from_directory函数加载和预处理图像数据。 - 模型构建:构建包含卷积层和池化层的模型。
- 过拟合的应对:使用数据增强和Dropout层减少过拟合。
- 数据准备:使用Keras的
关键代码和算法
1.1 卷积神经网络示例
from tensorflow import keras
from tensorflow.keras import layersinputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(inputs)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)
x = layers.Flatten()(x)
outputs = layers.Dense(10, activation="softmax")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
1.2 数据增强
data_augmentation = keras.Sequential([layers.RandomFlip("horizontal"),layers.RandomRotation(0.1),layers.RandomZoom(0.2),]
)inputs = keras.Input(shape=(180, 180, 3))
x = data_augmentation(inputs)
x = layers.Rescaling(1./255)(x)
x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Flatten()(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
1.3 使用预训练模型进行特征提取
conv_base = keras.applications.vgg16.VGG16(weights="imagenet",include_top=False,input_shape=(180, 180, 3)
)def get_features_and_labels(dataset):all_features = []all_labels = []for images, labels in dataset:preprocessed_images = keras.applications.vgg16.preprocess_input(images)features = conv_base.predict(preprocessed_images)all_features.append(features)all_labels.append(labels)return np.concatenate(all_features), np.concatenate(all_labels)train_features, train_labels = get_features_and_labels(train_dataset)
val_features, val_labels = get_features_and_labels(validation_dataset)
test_features, test_labels = get_features_and_labels(test_dataset)inputs = keras.Input(shape=(5, 5, 512))
x = layers.Flatten()(inputs)
x = layers.Dense(256)(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
1.4 微调预训练模型
conv_base = keras.applications.vgg16.VGG16(weights="imagenet",include_top=False
)
conv_base.trainable = True
for layer in conv_base.layers[:-4]:layer.trainable = Falsedata_augmentation = keras.Sequential([layers.RandomFlip("horizontal"),layers.RandomRotation(0.1),layers.RandomZoom(0.2),]
)inputs = keras.Input(shape=(180, 180, 3))
x = data_augmentation(inputs)
x = keras.applications.vgg16.preprocess_input(x)
x = conv_base(x)
x = layers.Flatten()(x)
x = layers.Dense(256)(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)model.compile(loss="binary_crossentropy",optimizer=keras.optimizers.RMSprop(learning_rate=1e-5),metrics=["accuracy"])
精彩语录
-
中文:卷积神经网络是计算机视觉任务中最佳的深度学习模型类型。
英文原文:Convnets are the best type of machine learning models for computer vision tasks.
解释:这句话强调了卷积神经网络在计算机视觉中的重要性。 -
中文:数据增强是减少过拟合的强大工具。
英文原文:Data augmentation is a powerful way to fight overfitting when you’re working with image data.
解释:这句话总结了数据增强在图像数据中的关键作用。 -
中文:通过特征提取,可以轻松地在新数据集上重用现有的卷积神经网络。
英文原文:It’s easy to reuse an existing convnet on a new dataset via feature extraction.
解释:这句话介绍了特征提取在小数据集上的应用。 -
中文:微调可以进一步提升性能。
英文原文:As a complement to feature extraction, you can use fine-tuning, which adapts to a new problem some of the representations previously learned by an existing model.
解释:这句话解释了微调如何改进模型性能。 -
中文:深度学习在小数据集上的表现令人印象深刻。
英文原文:There is a huge difference between being able to train on 20,000 samples compared to 2,000 samples!
解释:这句话强调了深度学习在小数据集上的潜力。
总结
通过本章的学习,读者将掌握计算机视觉中的深度学习技术,包括卷积神经网络的基本原理、数据增强、预训练模型的使用等。这些知识将为解决实际问题提供强大的工具。
相关文章:
Python 深度学习 第8章 计算机视觉中的深度学习 - 卷积神经网络使用实例
Python 深度学习 第8章 计算机视觉中的深度学习 - 卷积神经网络使用实例 内容概要 第8章深入探讨了计算机视觉中的深度学习,特别是卷积神经网络(convnets)的应用。本章详细介绍了卷积层和池化层的工作原理、数据增强技术、预训练模型的特征…...
Python基础总结(九)之推导式
文章目录 一、列表推导式1.1 列表推导式的格式1.2 列表推导式的注意事项1.3 列表推导式示例 二、 字典推导式2.1 字典推导式格式2.2 字典推导式注意事项2.3 字典推导式示例 三、 元组推导式3.1 元组推导式格式3.3 元组推导式示例 Python中的推导式有列表推导式,字典…...
[免费]SpringBoot+Vue博物馆(预约)管理系统【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的SpringBootVue博物馆(预约)管理系统,分享下哈。 项目视频演示 【免费】SpringBootVue博物馆(预约)管理系统 Java毕业设计_哔哩哔哩_bilibili 项目介绍 随着计算机科学技术的日渐成熟ÿ…...
基于LangChain4J的AI Services实践:用声明式接口重构LLM应用开发
基于LangChain4J的AI Services实践:用声明式接口重构LLM应用开发 前言:当Java开发遇上LLM编程困境 在LLM应用开发领域,Java开发者常面临两大痛点:一是需要手动编排Prompt工程、记忆管理和结果解析等底层组件,二是复杂…...
制作一款打飞机游戏12:初稿原型
当前进展 任务回顾:在之前,我们做了大量的规划和原型设计。我们创建了关卡,添加了侧向滚动和BOSS模式背景重复,还制作了一个紧凑的瓦片集。原型完成:我们完成了五个原型,基本实现了飞机飞行、滚动…...
【python】pyCharm常用快捷键使用-(2)
pyCharm常用快捷键使用 快速导入任意类 【CTRLALTSPACE】代码补全【CTRLSHIFTENTER】代码快速修正【ALTENTER】代码调试快捷键...
位运算,状态压缩dp(算法竞赛进阶指南学习笔记)
目录 移位运算一些位运算的操作最短 Hamilton 路径(状态压缩dp模板,位运算) 0x是十六进制常数的开头;本身是声明进制,后面是对应具体的数; 数组初始化最大值时用0x3f赋值; 移位运算 左移 把二…...
极狐GitLab 项目 API 的速率限制如何设置?
极狐GitLab 是 GitLab 在中国的发行版,关于中文参考文档和资料有: 极狐GitLab 中文文档极狐GitLab 中文论坛极狐GitLab 官网 项目 API 的速率限制 (BASIC SELF) 引入于 15.10 版本,功能标志为rate_limit_for_unauthenticated_projects_api_…...
机器视觉lcd屏增光片贴合应用
在现代显示制造领域,LCD屏增光片贴合工艺堪称显示效果的"画龙点睛"之笔。作为提升屏幕亮度、均匀度和色彩表现的关键光学组件,增光片的贴合精度直接影响着终端用户的视觉体验。传统人工贴合方式难以满足当前超窄边框、高分辨率显示屏的严苛要求…...
VScode-py环境
settings.json {"git.ignoreLimitWarning": true,"code-runner.runInTerminal": true,"code-runner.executorMap": {"python": "python3"} } 第二句话保证在终端里面进行IO 第三句话保证python3的用户不会执行python关键…...
大模型面经 | 春招、秋招算法面试常考八股文附答案(三)
大家好,我是皮先生!! 今天给大家分享一些关于大模型面试常见的面试题,希望对大家的面试有所帮助。 往期回顾: 大模型面经 | 春招、秋招算法面试常考八股文附答案(RAG专题一) 大模型面经 | 春招、秋招算法面试常考八股文附答案(RAG专题二) 大模型面经 | 春招、秋招算法…...
用键盘实现控制小球上下移动——java的事件控制
本文分享Java的一个有趣小项目,实现用键盘控制小球的移动 涉及java知识点:Swing GUI框架,绘图机制,事件处理,焦点控制 1.编写窗口和面板 (1.)定义面板类 Panel 继承自Java 自带类JPanel (2.)定义窗口类 window 继承…...
《Relay IR的基石:expr.h 中的表达式类型系统剖析》
TVM Relay源码深度解读 文章目录 TVM Relay源码深度解读一 、从Constant看Relay表达式的设计哲学1. 类定义概述2. ConstantNode 详解1. 核心成员2. 关键方法3. 类型系统注册 3. Constant 详解1. 核心功能 二. 核心内容概述(1) Relay表达式基类1. RelayExprNode 和 RelayExpr 的…...
《马尼拉》桌游期望计算器
《马尼拉》桌游期望计算器:做出最明智的决策 注:本项目仍在开发验证中,计算结果可能不够准确,欢迎游戏爱好者提供协助! 在线使用 | GitHub 项目简介 马尼拉期望计算器是一个基于 Vue 3 Vite 开发的网页应用ÿ…...
23种设计模式-结构型模式之适配器模式(Java版本)
Java 适配器模式(Adapter Pattern)详解 🔌 什么是适配器模式? 适配器模式用于将一个类的接口转换成客户端所期望的另一种接口,让原本接口不兼容的类可以协同工作。 📦 就像插头转换器,让不同…...
动态LOD策略细节层级控制:根据视角距离动态简化远距量子态渲染
动态LOD策略在量子计算可视化中的优化实现 1. 细节层级控制:动态简化远距量子态渲染 在量子计算的可视化中,量子态通常表现为高维数据(如布洛赫球面或多量子比特纠缠态)。动态LOD(Level of Detail)策略通过以下方式优化渲染性能: 距离驱动的几何简化: 远距离渲染:当…...
算法 | 成长优化算法(Growth Optimizer,GO)原理,公式,应用,算法改进研究综述,matlab代码
===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 ===================================================== 成长优化算法 一、算法原理二、核心公式三、应用领域四、算法改进研究五…...
线程池的介绍
目录 一、什么是线程池 二、线程池的详细内容 三、线程池的简化 一、什么是线程池 提到线程池,我们可能想到 常量池,可以先来说说常量池: 像是字符串常量,在Java程序最初构建的时候,就已经准备好了,等程…...
安恒安全渗透面试题
《网安面试指南》https://mp.weixin.qq.com/s/RIVYDmxI9g_TgGrpbdDKtA?token1860256701&langzh_CN 5000篇网安资料库https://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247486065&idx2&snb30ade8200e842743339d428f414475e&chksmc0e4732df793fa3bf39…...
基于瑞芯微RK3576国产ARM八核2.2GHz A72 工业评估板——ROS2系统使用说明
前 言 本文主要介绍创龙科技TL3576-MiniEVM评估板演示基于Ubuntu的ROS系统(版本:ROS2 Foxy)使用说明,包括镜像编译、镜像替换,以及ROS系统测试的方法。适用开发环境如下。 Windows开发环境:Windows 10 64bit Linux虚拟机环境:VMware16.2.5、Ubuntu22.04.5 64bit U-B…...
Python爬虫实战:获取高考网专业数据并分析,为志愿填报做参考
一、引言 高考志愿填报是考生人生的关键节点,合理的志愿填报能为其未来发展奠定良好基础。计算机类专业作为当下热门领域,相关信息对考生填报志愿至关重要。教育在线网站虽提供丰富的计算机类专业数据,但存在反爬机制,增加了数据获取难度。本研究借助 Scrapy 爬虫技术及多…...
计算机是如何工作的(上)
对于学习JavaEE初阶为什么要知道计算机是如何工作的,是因为在未来我们写代码的时候,会出现一些bug,而在代码层面是看不出来的,所以我们需要了解一些关于计算机内部是如何工作的,从而提高代码的健壮度。 计算机的组成&…...
基础服务系列-Windows10 安装AnacondaJupyter
下载 https://www.anaconda.com/products/individual 安装 安装Jupyter 完成安装 启动Jupyter 浏览器访问 默认浏览器打开,IE不兼容,可以换个浏览器 修改密码 运行脚本...
构造微调训练数据集
借助 ChatGPT 和 GPT API我们可以实现自动化批量构造训练数据集。 下面我们以中国古典哲学数据集为例,展示了自动构造训练集的主要流程: 使用 LangChain 构造训练数据样例 o基于 ChatGPT 设计 System Role 提示词 。使用 0penAI GPT-4o-mini 生成基础数据 解析 Open…...
Kubernetes架构介绍
实验环境 安装好k8s集群 一、kubernetes组件构成 1、架构图 2、组件介绍 使用以下命令查看相关资源 kubectl get nodes 查看群集节点 kubectl get ns 查看名称空间 kubectl get pod -A …...
远程服务器的mysql连接不上,问题出在哪里
使用本地ideal测试连接报错记录 排查 检查mysql服务是否正常,输入命令systemctl status mysql查看 检查端口netstat -plnt | grep mysql 最后检查服务器的防火墙设置 我以为在服务器厂商的控制面板设置放行规则就行,导致一直无法排查出问题,最后才发现由…...
Java高频面试之并发编程-04
hello啊,各位观众姥爷们!!!本baby今天来报道了!哈哈哈哈哈嗝🐶 面试官:调用 start()方法时会执行 run()方法,那为什么不直接调用 run()方法? 多线程中调用 start() 方法…...
【第16届蓝桥杯软件赛】CB组第一次省赛
个人主页:Guiat 归属专栏:算法竞赛 文章目录 A. 移动距离(5分填空题)B. 客流量上限(5分填空题)C. 可分解的正整数D. 产值调整E. 画展布置F. 水质检测G. 生产车间H. 装修报价 正文 总共10道题。 A. 移动距离…...
云原生--基础篇-2--云计算概述(云计算是云原生的基础,IaaS、PaaS和SaaS服务模型)
1、云计算概念 云计算是一种通过互联网提供计算资源(包括服务器、存储、数据库、网络、软件等)和服务的技术模式。用户无需拥有和维护物理硬件,而是可以根据需要租用这些资源,并按使用量付费。 2、云计算特点 (1&am…...
uniapp云打包针对谷歌视频图片权限的解决方案
谷歌在24年底推出把图片和视频细分为两个权限,uniapp使用uni.chooseImage云打包默认图片视频为一个权限,不符合谷歌要求会被下架 解决方法,在项目根目录下新建AndroidManifest.xml移除不必要的权限 <?xml version"1.0" encoding"utf…...
