【五模型时间序列预测对比】Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN
【五模型时间序列预测对比】Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN
目录
- 【五模型时间序列预测对比】Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型单变量时间序列预测对比 (Matlab2023b)
1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!
2.Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型单变量时间序列预测对比 (Matlab2023b 单变量时间序列预测)。
3.运行环境要求MATLAB版本为2023b及其以上。
4.评价指标包括:R2、MAE、MSE、RPD、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。
代码功能
这段MATLAB代码实现了一个多模型时间序列预测对比系统,核心功能包括:
使用5种深度学习模型(CNN、LSTM、CNN-LSTM、Transformer、Transformer-LSTM)进行时间序列预测
完整的预测流程:数据预处理→模型构建→训练→预测→结果可视化
全面的模型性能评估与对比分析
算法步骤
数据预处理:
从Excel导入单列时间序列数据
构建滑动窗口数据集(历史步长kim=7,预测下一个时间点)
70/30比例划分训练/测试集
数据归一化(0-1范围)
模型构建与训练:
CNN:2层卷积(16/32滤波器) + 全连接层
LSTM:单层LSTM(20单元) + 全连接
CNN-LSTM:卷积层特征提取 → LSTM时序建模
Transformer:位置编码 + 2层自注意力 + 全连接
Transformer-LSTM:Transformer特征提取 → LSTM时序建模
预测与评估:
各模型分别进行训练/测试集预测
计算5种评价指标:RMSE、MAE、MAPE、R²、MSE
反归一化恢复原始数据尺度
可视化分析:
损失函数曲线(训练过程监控)
预测结果对比曲线(5模型并行展示)
误差分布直方图
多维指标雷达图
罗盘图/柱状图/散点图对比
应用场景
金融预测:股票价格、汇率波动预测
能源领域:电力负荷、能源消耗预测
气象预测:温度、降水量时序预测
工业预测:设备故障预警、生产指标预测
算法研究:深度学习时序模型对比基准
创新亮点
多模型集成对比:一站式比较5类主流时序模型
三维可视化:雷达图/罗盘图实现多维指标直观对比
复合架构:CNN-LSTM/Transformer-LSTM等混合模型
参数配置:经调优的L2正则化/学习率衰减策略
全面评估体系:5大误差指标+7种可视化分析
程序设计
- 完整代码私信回复五模型时间序列预测对比,Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');%% 数据分析
num_samples = length(result); % 样本个数
kim = 7; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测%% 划分数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end%% 数据集分析
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
p_train = double(reshape(p_train, f_, 1, 1, M));
p_test = double(reshape(p_test , f_, 1, 1, N));
t_train = double(t_train)';
t_test = double(t_test )';
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
相关文章:

【五模型时间序列预测对比】Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN
【五模型时间序列预测对比】Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN 目录 【五模型时间序列预测对比】Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Transformer-LSTM、Transformer、CNN-LSTM、LSTM、…...

深入了解MCP基础与架构
一、引言 在人工智能技术以指数级速度渗透各行业领域的今天,我们正站在一个关键的技术拐点。当ChatGPT月活突破亿级、Gemini Pro实现多模态实时交互、Claude 3.5 Sonnet突破百万上下文长度,这些里程碑事件背后,一个崭新的大门逐步打开&#…...

实验设计与分析(第6版,Montgomery)第5章析因设计引导5.7节思考题5.13 R语言解题
本文是实验设计与分析(第6版,Montgomery著,傅珏生译) 第5章析因设计引导5.7节思考题5.13 R语言解题。主要涉及方差分析,正态假设检验,残差分析,交互作用图。 dataframe<-data.frame( yc(36,18,30,39,20…...
怎么选择合适的高防IP
选择合适的高防IP需要综合考虑业务需求、防护能力、服务稳定性、成本效益等多方面因素。以下是从多个权威来源整理的关键要点,帮助您做出科学决策: 一、明确业务需求 业务类型与规模 网站/应用类:需支持HTTP/HTTPS协议,并配置域名…...

【java面试】MySQL篇
MySQL篇 一、总体结构二、优化(一)定位慢查询1.1 开源工具1.2Mysql自带的慢日志查询1.3 总结 (二)定位后优化2.1 优化2.2 总结 (三)索引3.1 索引3.2 索引底层数据结构——B树3.3 总结 (四&#…...

贪心算法应用:欧拉路径(Fleury算法)详解
Java中的贪心算法应用:欧拉路径(Fleury算法)详解 一、欧拉路径与欧拉回路基础 1.1 基本概念 欧拉路径(Eulerian Path)是指在一个图中,经过图中每一条边且每一条边只经过一次的路径。如果这条路径的起点和…...

【算法设计与分析】实验——二维0-1背包问题(算法分析题:算法思路),独立任务最优调度问题(算法实现题:实验过程,描述,小结)
说明:博主是大学生,有一门课是算法设计与分析,这是博主记录课程实验报告的内容,题目是老师给的,其他内容和代码均为原创,可以参考学习,转载和搬运需评论吱声并注明出处哦。 要求:3-…...
P12592题解
题目传送门 思路 由于题目中说了可以任意交换两个字符的位置,我们只需要判断这个字符串是否满足回文串的条件即可。 代码: #include<bits/stdc.h> using namespace std; int a[30]; int main(){int T;cin>>T;while(T--){fill(a,a29,0);/…...
ffmpeg命令(二):分解与复用命令
分解(Demuxing) 提取视频流(不含音频) ffmpeg -i input.mp4 -an -vcodec copy video.h264-an:去掉音频 -vcodec copy:拷贝视频码流,不重新编码 提取音频流(不含视频)…...

【Git】View Submitted Updates——diff、show、log
在 Git 中查看更新的内容(即工作区、暂存区或提交之间的差异)是日常开发中的常见操作。以下是常用的命令和场景说明: 文章目录 1、查看工作区与暂存区的差异2、查看提交历史中的差异3、查看工作区与最新提交的差异4、查看两个提交之间的差异5…...

deepseek原理和项目实战笔记2 -- deepseek核心架构
混合专家(MoE) 混合专家(Mixture of Experts, MoE) 是一种机器学习模型架构,其核心思想是通过组合多个“专家”子模型(通常为小型神经网络)来处理不同输入,从而提高模型的容…...

在 MATLAB 2015a 中如何调用 Python
在 MATLAB 2015a 中调用 Python 可通过系统命令调用、.NET 交互层包装、MEX 接口间接桥接、环境变量配置四种方式,但因该版本对 Python 支持有限,主要依赖的是系统命令调用与间接脚本交互。其中,通过 system() 函数调用 Python 脚本是最简单且…...

房屋租赁系统 Java+Vue.js+SpringBoot,包括房屋类型、房屋信息、预约看房、合同信息、房屋报修、房屋评价、房主管理模块
房屋租赁系统 JavaVue.jsSpringBoot,包括房屋类型、房屋信息、预约看房、合同信息、房屋报修、房屋评价、房主管理模块 百度云盘链接:https://pan.baidu.com/s/1KmwOFzN9qogyaLQei3b6qw 密码:l2yn 摘 要 社会的发展和科学技术的进步…...

华为OD机试真题——生成哈夫曼树(2025B卷:100分)Java/python/JavaScript/C/C++/GO六种最佳实现
2025 B卷 100分 题型 本文涵盖详细的问题分析、解题思路、代码实现、代码详解、测试用例以及综合分析; 并提供Java、python、JavaScript、C++、C语言、GO六种语言的最佳实现方式! 本文收录于专栏:《2025华为OD真题目录+全流程解析/备考攻略/经验分享》 华为OD机试真题《生成…...
react与vue的渲染原理
vue:响应式驱动模板编译 (1)模板编译 将模板(.vue 文件或 HTML 模板)编译为 渲染函数(Render Function); (2)响应式依赖收集 初始化时,通过 Ob…...
我提出结构学习的思路,意图用结构学习代替机器学习
我提出结构学习的思路,意图用结构学习代替机器学习 1.机器学习的本质和缺点 机器学习的规律是设计算法、用数据训练算法、让算法学会产生正确的数据回答问题,其缺点在于,需要大规模训练数据和巨大算力还其次,机器学习不能产生智…...
Outbox模式:确保微服务间数据可靠交换的设计方案
https://debezium.io/blog/2019/02/19/reliable-microservices-data-exchange-with-the-outbox-pattern/ Outbox模式是一种在微服务架构中确保数据更改和消息/事件发布之间可靠性的设计模式。它解决了在更新数据库和发送消息这两个独立操作中可能出现的不一致问题(…...
数据可视化的定义和类型
数据可视化是一种将数据转换为图形或视觉表示的方法。想象一下,你面前有一堆数字和表格,看着这些,可能会让人头大。数据可视化就像是给这些枯燥的数字画上一幅画。它用图表、地图和各种有趣的图形,帮我们把难懂的数字变得容易看懂…...
sqlite-vec:谁说SQLite不是向量数据库?
sqlite-vec 是一个 SQLite 向量搜索插件,具有以零依赖、轻量级、跨平台和高效 KNN 搜索等优势,是本地化向量检索(例如 RAG)、轻量级 AI 应用以及边缘计算等场景的理想工具。 sqlite-vec 使用纯 C 语言实现,零外部依赖…...

Redis最佳实践——性能优化技巧之监控与告警详解
Redis 在电商应用的性能优化技巧之监控与告警全面详解 一、监控体系构建 1. 核心监控指标矩阵 指标类别关键指标计算方式/说明健康阈值(参考值)内存相关used_memoryINFO Memory 获取不超过 maxmemory 的 80%mem_fragmentation_ratio内存碎片率 used_m…...

R3GAN训练自己的数据集
简介 简介:这篇论文挑战了"GANs难以训练"的广泛观点,通过提出一个更稳定的损失函数和现代化的网络架构,构建了一个简洁而高效的GAN基线模型R3GAN。作者证明了通过合适的理论基础和架构设计,GANs可以稳定训练并达到优异…...
MATLAB实战:Arduino硬件交互项目方案
以下是一个使用MATLAB与Arduino进行硬件交互的项目方案,涵盖传感器数据采集和执行器控制。本方案使用MATLAB的Arduino硬件支持包,无需额外编写Arduino固件。 系统组成 硬件: Arduino Uno 温度传感器(如LM35) 光敏电…...
bert扩充或者缩小词表
在BERT模型中添加自己的词汇(pytorch版) - 知乎 输入 1. 扩充词表 替换bert词表中的【unused】 2. 缩小词表 因为要使用预训练的模型,词id不能变,词向量矩阵大小不变 要做的是将减少的那一部分词全部对应为unk,即可…...
什么是 TOML?
🛠 Rust 配置文件实战:TOML 语法详解与结构体映射( 在 Rust 中,Cargo.toml 是每个项目的心脏。它不仅定义了项目的名称、版本和依赖项,还使用了一种轻巧易读的配置语言:TOML。 本文将深入解析 TOML 的语法…...
git怎么合并两个分支
git怎么合并分支代码 注意: 第一步你得把当前分支合到远程分支去才能有下面的操作 另外我是将develop分支代码合并到release分支去 git 命令 查看本地所有分支 git branch切换分支 例如切换到release分支 git checkout release拉取代码 git pull up release 合并分支 …...
1.文件操作相关的库
一、filesystem(C17) 和 fstream 1.std::filesystem::path - cppreference.cn - C参考手册 std::filesystem::path 表示路径 构造函数: path( string_type&& source, format fmt auto_format ); 可以用string进行构造,也可以用string进行隐式类…...
Pytorch中一些重要的经典操作和简单讲解
Pytorch中一些重要的经典操作和简单讲解: 形状变换操作 reshape() / view() import torchx torch.randn(2, 3, 4) print(f"原始形状: {x.shape}")# reshape可以处理非连续张量 y x.reshape(6, 4) print(f"reshape后: {y.shape}")# view要求…...

【容器docker】启动容器kibana报错:“message“:“Error: Cannot find module ‘./logs‘
说明: 1、服务器数据盘挂了,然后将以前的数据用rsync拷贝过去,启动容器kibana服务,报错信息如下图所示: 2、可能是拷贝docker文件夹,有些文件没有拷贝过去,导致无论是给文件夹授权用户kibana或者…...
基于bp神经网络的adp算法
基于BP神经网络的ADP(自适应动态规划)小程序的MATLAB实现示例。这个小程序包含Actor网络和Critic网络,用于解决优化问题。 MATLAB代码示例 % 基于BP神经网络的ADP小程序 % 包含Actor网络和Critic网络% 定义网络结构 inputSize 2; % 输入层…...

C#里与嵌入式系统W5500网络通讯(4)
怎么样修改W5500里的socket收发缓冲区呢? 需要进行下面的工作,首先要了解socket缓冲区的作用,接着了解缓冲区的硬件资源, 最后就是要了解自己的需求,比如自己需要哪个socket的收发送缓冲区多大。 硬件的寄存器为: 这是 W5500 数据手册中关于 Sn_RXBUF_SIZE(Socket n …...