论文笔记:Large Language Models for Next Point-of-Interest Recommendation
SIGIR 2024
1 intro
- 传统的基于数值的POI推荐方法在处理上下文信息时存在两个主要限制
- 需要将异构的LBSN数据转换为数字,这可能导致上下文信息的固有含义丢失
- 仅依赖于统计和人为设计来理解上下文信息,缺乏对上下文信息提供的语义概念的理解
- ——>使用预训练的大语言模型来进行推荐
- 允许在原始格式下保留异构的LBSN数据,从而避免上下文信息的丢失
- 能够通过包含常识知识来理解上下文信息的内在含义
2 方法
2.1 轨迹提示
-
当前轨迹块(current trajectory block)
-
当前轨迹块中只包含当前用户的一条轨迹,且不含最后一个签到点
-
-
历史轨迹块(historical trajectory block)
-
在当前轨迹块和历史轨迹块中,为每条签到记录生成一个句子
-
对每条签到记录 𝑞 = (𝑢,𝑝,𝑐,𝑡,𝑔),构造句子为:
-
在 [time],用户 [user id] 访问了 POI 编号 [poi id],该地点属于 [poi category name] 类别,其类别 ID 为 [category id]。
-
为节省 token 数量,没有将地理坐标(geo-coordinates)包含在句子中
-
同时论文发现,未经特别地图数据微调的 LLM 无法很好地理解坐标信息
-
-
-
历史轨迹块则可以包含来自当前用户及其他行为相似用户的多条轨迹,以应对轨迹短和冷启动问题
-
-
指令块(instruction block)
-
指令块用于引导模型关注目标任务,并提醒 POI ID 的取值范围
-
-
目标块(target block)
-
目标块用于微调和评估阶段,包含要预测的签到记录(时间戳、用户 ID、POI ID),但在推理阶段不会作为输入
-
作者尝试将 POI 类别信息加入指令块和目标块,希望模型更关注 POI ID 与类别之间的关系,但实验显示效果提升不明显,可能模型已隐式学会这种关系。
-
2.2 键-查询对相似性计算
- 为了从用户历史轨迹及其他用户轨迹中挖掘行为模式,提出了适用于自然语言轨迹格式的键-查询对相似度计算框架
- 当前轨迹块中的轨迹被视为Key
- 所有结束时间早于该 Key 的轨迹被视为Query
- 计算所有 Key-Query 对的相似度,并从中选出与 Key 相似度较高的 Query,将其用于生成历史轨迹块内容
- 每个 Key 和 Query prompt 输入到 LLM 编码器中,提取最后一层的表示向量
- 对每组 Key 和 Query 计算余弦相似度,提取最高的top-k个Query
2.3 监督微调
在训练集中,将提示中的 <question>
部分送入预训练 LLM,而 <answer>
部分作为监督信号进行微调
LoRA+NormalFloat 4-bit量化+FlashAttention
3 实验
相关文章:

论文笔记:Large Language Models for Next Point-of-Interest Recommendation
SIGIR 2024 1 intro 传统的基于数值的POI推荐方法在处理上下文信息时存在两个主要限制 需要将异构的LBSN数据转换为数字,这可能导致上下文信息的固有含义丢失仅依赖于统计和人为设计来理解上下文信息,缺乏对上下文信息提供的语义概念的理解 ——>使用…...

LeetCode 2894.分类求和并作差
目录 题目: 题目描述: 题目链接: 思路: 思路一详解(遍历 判断): 思路二详解(数学规律/公式): 代码: Java思路一(遍历 判断&a…...
n8n:解锁自动化工作流的无限可能
在当今快节奏的数字时代,无论是企业还是个人,都渴望提高工作效率,减少重复性任务的繁琐操作。而 n8n,这个强大的开源自动化工具,就像一位智能的数字助手,悄然走进了许多人的工作和生活,成为提升…...
链结构与工作量证明7️⃣:用 Go 实现比特币的核心机制
链结构与工作量证明:用 Go 实现比特币的核心机制 如果你用 Go 写过区块、算过哈希,也大致理解了非对称加密、数据序列化这些“硬核知识”,那么恭喜你,现在我们终于可以把这些拼成一条完整的“区块链”。 不过别急,这一节我们重点搞懂两件事: 区块之间是怎么连接成“链”…...
CMake系统学习笔记
CMake系统学习笔记 基础操作 最基本的案例 // code #include <iostream>int main() {std::cout << "hello world " << std::endl;return 0; }// CMakeLists.txt cmake_minimum_required(VERSION 3.0)# 定义当前工程名称 project(demo)add_execu…...

CCF 开源发展委员会 “开源高校行“ 暨红山开源 + OpenAtom openKylin 高校行活动在西安四所高校成功举办
点击蓝字 关注我们 CCF Opensource Development Committee CCF开源高校行 暨红山开源 openKylin 高校行 西安站 5 月 26 日至 28 日,CCF 开源发展委员会 "开源高校行" 暨红山开源 OpenAtom openKylin 高校行活动在西安四所高校(西安交通大学…...
【Go语言基础【6】】字符串格式化说明
文章目录 零、格式化常用场景一、Go 字符串格式化核心概念二、常用格式化占位符1. 整数类型2. 浮点数类型3. 字符串与布尔类型4. 指针与通用类型 三、宽度与精度控制1. 宽度控制2. 精度控制(浮点数/字符串) 零、格式化常用场景 数值转字符串:…...
调试快捷键 pycharm vscode
目录 调试快捷键 pycharm vscode 修改快捷键 方法 1:通过菜单打开 方法 2:用快捷键打开 调试快捷键 pycharm Resume Program F9 Step Over F8 两个离的比较近,比较方便,比vscode的好。 vscode Continue F5 改为F9 S…...

RabbitMQ work模型
Work 模型是 RabbitMQ 最基础的消息处理模式,核心思想是 多个消费者竞争消费同一个队列中的消息,适用于任务分发和负载均衡场景。同一个消息只会被一个消费者处理。 当一个消息队列绑定了多个消费者,每个消息消费的个数都是平摊的&a…...

基于微信小程序的作业管理系统源码数据库文档
作业管理系统 摘 要 随着社会的发展,社会的方方面面都在利用信息化时代的优势。互联网的优势和普及使得各种系统的开发成为必需。 本文以实际运用为开发背景,运用软件工程原理和开发方法,它主要是采用java语言技术和微信小程序来完成对系统的…...
C++参数传递 a与a的区别
在 C 中,&a(引用)和 a(值传递) 的关键区别在于 参数如何传递给函数,以及由此引发的 性能、语义和安全问题。 最核心的在于你想不想传入的参数被改变,如果想,就用参数传递&#…...

CSS(2)
文章目录 Emmet语法快速生成HTML结构语法 Snipaste快速生成CSS样式语法快速格式化代码 快捷键(VScode)CSS 的复合选择器什么是复合选择器交集选择器后代选择器(重要)子选择器(重要)并集选择器(重要)**链接伪类选择器**focus伪类选…...
Linux--vsFTP配置篇
一、vsFTP 简介 vsftpd(Very Secure FTP Daemon)是 Linux 下常用的 FTP 服务程序,具有安全性高、效率高和稳定性好等特点。支持匿名访问、本地用户登录、虚拟用户等多种认证方式,并可灵活控制权限。 二、安装与启动 1. 检查是否已…...

【RabbitMQ】- Channel和Delivery Tag机制
在 RabbitMQ 的消费者代码中,Channel 和 tag 参数的存在是为了实现消息确认机制(Acknowledgment)和精细化的消息控制。 Channel 参数 作用 Channel 是 AMQP 协议的核心操作接口,通过它可以直接与 RabbitMQ 交互: 手…...
.Net Framework 4/C# 面向对象编程进阶
一、继承 (一)使用继承 子类可以继承父类原有的属性和方法,也可以增加原来父类不具备的属性和方法,或者直接重写父类中的某些方法。 C# 中使用“:”来表示两个类的继承。子类不能访问父类的私有成员,但是可以访问其公有成员,即只要使用 public 声明类成员,就既可以让一…...

NLP学习路线图(三十四): 命名实体识别(NER)
一、命名实体识别(NER)是什么? 命名实体识别(Named Entity Recognition, NER)是自然语言处理中的一项关键序列标注任务。其核心目标是从非结构化的文本中自动识别出特定类别的名词性短语,并将其归类到预定义的类别中。 核心目标:找到文本中提到的命名实体,并分类。 典…...

【HTML】HTML 与 CSS 基础教程
作为 Java 工程师,掌握 HTML 和 CSS 也是需要的,它能让你高效与前端团队协作、调试页面元素,甚至独立完成简单页面开发。本文将用最简洁的方式带你掌握核心概念。 一、HTML,网页骨架搭建 核心概念:HTML通过标签定义内…...
【NLP】 38. Agent
什么是 Agent? 一个 Agent 就是能够 理解、思考,并且进行世界交互 的模型系统,并不是纯粹的 prompt 返回器。 它可以: 读取外部数据(文件/API)使用记忆进行上下文维持用类Chain-of-Thought (CoT)方式进行…...

Windows开机自动启动中间件
WinSW(Windows Service Wrapper 是一个开源的 Windows 服务包装器,它可以帮助你将应用程序打包成系统服务,并实现开机自启动的功能。 一、下载 WinSW 下载 WinSW-x64.exe v2.12.0 (⬇️ 更多版本下载) 和 sample-minimal.xml 二、配置 WinS…...
AIGC 基础篇 Python基础 02
1.bool类型 书接上回,我们上次最后讲了三大数据类型,除了这三个之外,Python也有bool类型,也就是True和False。 a 2 print(a1) print(a2) 像这里,输出的内容第一个是False,因为a的值为2,而第…...

【图片转AR场景】Tripo + Blender + Kivicube 实现图片转 AR 建模
总览 1.将 2D 图片转为立体建模 2. 3. 一、将 2D 图片转为立体建模 1.工具介绍 Tripo 网站 2.找图片 找的图片必须是看起来能够让 AI 有能力识别和推理的,因为现在的AI虽然可以补全但是能力还没有像人的想象力那么丰富。 比如上面这张图片,看起来虽…...
NLP常用工具包
✨做一次按NLP项目常见工具的使用拆解 1. tokenizer from torchtext.data.utils import get_tokenizertokenizer get_tokenizer(basic_english) text_sample "Were going on an adventure! The weather is really nice today." tokens tokenizer(text_sample) p…...

LSTM-XGBoost多变量时序预测(Matlab完整源码和数据)
LSTM-XGBoost多变量时序预测(Matlab完整源码和数据) 目录 LSTM-XGBoost多变量时序预测(Matlab完整源码和数据)效果一览基本介绍程序设计参考资料 效果一览 基本介绍 普通的多变量时序已经用腻了,审稿人也看烦了&#…...
Git 切换到旧提交,同时保证当前修改不丢失
在 Git 中,可以通过以下几种方式切换到之前的提交,同时保留当前的修改 1. 使用 git checkout 创建临时分离头指针(推荐用于查看代码) git checkout <commit-hash>这会让你进入"分离头指针"状态,你可…...

C#学习12——预处理
一、预处理指令: 解释:是在编译前由预处理器执行的命令,用于控制编译过程。这些命令以 # 开头,每行只能有一个预处理指令,且不能包含在方法或类中。 个人理解:就是游戏里面的备战阶段(不同对局…...

Razor编程中@Helper的用法大全
文章目录 第一章:Helper基础概念1.1 Helper的定义与作用1.2 Helper的基本语法结构1.3 Helper与HtmlHelper的区别 第二章:基础Helper用法2.1 无参数Helper2.2 带简单参数的Helper2.3 带默认值的参数2.4 使用模型作为参数 第三章:高级Helper用法…...
React 样式方案与状态方案初探
React 本身只提供了基础 UI 层开发范式,其他特性的支持需要借助相关社区方案实现。本文将介绍 React 应用体系中样式方案与状态方案的主流选择,帮助开发者根据项目需求做出合适的选择。 1. React 样式方案 1.1. 内联样式 (Inline Styles) 通过 style …...

鸿蒙APP测试实战:从HDC命令到专项测试
普通APP的测试与鸿蒙APP的测试有一些共同的特征,但是也有一些区别,其中共同特征是,它们都可以通过cmd的命令提示符工具来进行app的性能测试。 其中区别主要是,对于稳定性测试的命令的区别,性能指标获取方式的命令的区…...
git删除本地分支和远程分支
删除本地分支 git branch -d 分支名删除远程分支 git push origin --delete 分支名...
MySQL用户远程访问权限设置
mysql相关指令 一. MySQL给用户添加远程访问权限1. 创建或者修改用户权限方法一:创建用户并授予远程访问权限方法二:修改现有用户的访问限制方法三:授予特定数据库的特定权限 2. 修改 MySQL 配置文件3. 安全最佳实践4. 测试远程连接5. 撤销权…...