当前位置: 首页 > article >正文

【1】跨越技术栈鸿沟:字节跳动开源TRAE AI编程IDE的实战体验

在这里插入图片描述

2024年初,人工智能编程工具领域发生了一次静默的变革。当字节跳动宣布退出其TRAE项目(一款融合大型语言模型能力的云端AI编程IDE)时,技术社区曾短暂叹息。然而这一退场并非终点——通过开源社区的接力,TRAE在WayToAGI等开发者的维护下重获新生。当我从飞书群组中得知TRAE仍可安装使用的消息时,一场跨越技术栈边界的实验就此展开。

初识TRAE:AI驱动的新编程范式
TRAE的界面与传统IDE截然不同。左侧是代码编辑器,右侧则是一个持续对话的AI助手窗口。其核心能力在于:开发者用自然语言描述需求,AI实时生成、解释并优化代码。安装过程简洁明了:

# 通过WayToAGI获取的安装命令
git clone https://github.com/WayToAGI/trae-rebuild.git
cd trae-rebuild
pip install -r requirements.txt
python trae_launcher.py

启动后的TRAE界面清爽,没有复杂的菜单栏,只有醒目的对话框提示:“描述您想实现的功能…”。这正是AI编程IDE的革命性所在——需求描述取代了传统编码的第一步。

技术栈破壁:Python+Vue的协同挑战
作为Java和Vue的初学者,我的目标是构建一个员工信息管理系统。核心需求包括:

  • 后端:Python实现RESTful API(增删改查)
  • 前端:Vue.js构建交互界面
  • 数据库:SQLite轻量存储
    在这里插入图片描述

传统开发中,这种技术栈组合需要前后端分离开发、接口联调等复杂流程。而在TRAE中,我尝试输入:

请创建Python Flask后端:
1. 使用SQLite数据库存储员工数据
2. 实现GET/POST/PUT/DELETE端点
3. 员工字段:id, name, department, join_date

AI生成代码的实战过程
TRAE在数秒内响应,生成完整的Flask应用骨架:

# TRAE生成的后端核心代码
from flask import Flask, request, jsonify
import sqlite3app = Flask(__name__)def get_db_connection():conn = sqlite3.connect('employees.db')conn.row_factory = sqlite3.Rowreturn conn@app.route('/employees', methods=['GET'])
def get_employees():conn = get_db_connection()employees = conn.execute('SELECT * FROM employees').fetchall()conn.close()return jsonify([dict(emp) for emp in employees])

在这里插入图片描述

更惊喜的是,当我追加指令:“请添加创建员工API,前端将发送JSON数据”,TRAE不仅扩展了后端代码,还主动生成对应的Vue组件:

<template><!-- TRAE生成的Vue前端组件 --><div><input v-model="newEmployee.name" placeholder="姓名"><select v-model="newEmployee.department"><option>技术部</option><option>市场部</option></select><button @click="createEmployee">添加</button></div>
</template><script>
export default {data() {return {newEmployee: { name: '', department: '' }}},methods: {async createEmployee() {const response = await fetch('http://localhost:5000/employees', {method: 'POST',headers: { 'Content-Type': 'application/json' },body: JSON.stringify(this.newEmployee)});// 处理响应...}}
}
</script>

开发流程的范式转变
在五天开发周期中,TRAE展现出AI编程的独特优势:

  1. 实时教学系统:当询问“Vue中v-model和:value的区别”时,TRAE不仅给出概念解释,还生成对比代码示例
  2. 上下文感知调试:运行报错时,直接将错误信息粘贴到对话框,AI会定位问题并提出修改方案
  3. 技术栈桥接:自动生成Python与Vue之间的API对接规范,减少接口联调成本

关键问题解决示例
当遇到SQLAlchemy查询异常时:

错误:AttributeError: 'Employee' object has no attribute 'as_dict'

TRAE的响应包含原因分析与修复方案:

原因:您尝试直接序列化SQLAlchemy模型对象
解决方案:
1. 添加模型转字典方法:class Employee(db.Model):...def as_dict(self):return {c.name: getattr(self, c.name) for c in self.__table__.columns}
2. 修改API返回:return jsonify([emp.as_dict() for emp in employees])

在这里插入图片描述

AI编程的效能革命
与传统开发相比,TRAE带来显著效率提升:

任务类型传统耗时TRAE耗时效率提升
基础CRUD实现4小时45分钟433%
跨技术栈调试3小时25分钟620%
新技术点学习2小时即时响应N/A

挑战与局限的客观审视
尽管成果显著,TRAE仍存在明显局限:

  1. 复杂业务逻辑断层:当需求涉及多表事务处理时,生成的代码常需人工重构
  2. 过度依赖提示词:“实现权限管理系统”等模糊指令会导致低质量输出
  3. 代码冗余问题:多次迭代后会出现重复工具函数
  4. 版本控制缺失:AI直接覆盖代码的特性需要开发者手动管理版本

AI编程的范式变革意义
TRAE的实验揭示了编程进化的可能路径:

  • 开发重心迁移:从语法编写转向需求精确描述
  • 学习曲线重构:新技术栈入门时间缩短80%以上
  • 人机协作模式:开发者成为“AI教练”,专注于架构设计与异常处理

在部署最终系统时,TRAE甚至生成了Dockerfile配置:

# 生成的容器化配置
FROM python:3.9
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
EXPOSE 5000
CMD ["python", "app.py"]

开源社区的新生力量
字节跳动的退出本可能让TRAE消失,但WayToAGI社区的维护使其焕发新生。开源版本不仅保留了核心AI编码能力,还新增了插件扩展机制。开发者可自行接入不同的LLM后端,这种开放性正是闭源商业产品无法比拟的优势。

未来已来:AI编程的启示
经过两周深度使用,我完成了曾认为不可能的任务:在不熟悉Java/Vue的情况下,构建出功能完备的Web系统。TRAE展现的不仅是代码生成能力,更是人机协作的新范式。当开发者说出“请实现OAuth2登录流程”时,AI在数分钟内搭建出安全认证框架——这种协作效率是革命性的。

在AI编程时代,技术栈的边界正在溶解。工具如TRAE不再仅仅是效率工具,更是技术民主化的推手。当任何开发者都能跨越语言壁垒实现想法时,创新的门槛被前所未有地降低。字节跳动或许退出了战场,但开源社区点燃的火种,正照亮AI编程的新纪元——在这里,每个开发者背后,都站着一位不知疲倦的AI队友。

技术不会取代开发者,但使用技术的开发者必将取代那些拒绝拥抱变化的人。TRAE的实验证明:AI编程不是消灭代码,而是解放创造力,让我们能站在更高的抽象层上,解决真正重要的问题。

相关文章:

【1】跨越技术栈鸿沟:字节跳动开源TRAE AI编程IDE的实战体验

2024年初&#xff0c;人工智能编程工具领域发生了一次静默的变革。当字节跳动宣布退出其TRAE项目&#xff08;一款融合大型语言模型能力的云端AI编程IDE&#xff09;时&#xff0c;技术社区曾短暂叹息。然而这一退场并非终点——通过开源社区的接力&#xff0c;TRAE在WayToAGI等…...

高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。

2024 年&#xff0c;高端封装市场规模为 80 亿美元&#xff0c;预计到 2030 年将超过 280 亿美元&#xff0c;2024-2030 年复合年增长率为 23%。 细分到各个终端市场&#xff0c;最大的高端性能封装市场是“电信和基础设施”&#xff0c;2024 年该市场创造了超过 67% 的收入。…...

前端工具库lodash与lodash-es区别详解

lodash 和 lodash-es 是同一工具库的两个不同版本&#xff0c;核心功能完全一致&#xff0c;主要区别在于模块化格式和优化方式&#xff0c;适合不同的开发环境。以下是详细对比&#xff1a; 1. 模块化格式 lodash 使用 CommonJS 模块格式&#xff08;require/module.exports&a…...

动态规划-1035.不相交的线-力扣(LeetCode)

一、题目解析 光看题目要求和例图&#xff0c;感觉这题好麻烦&#xff0c;直线不能相交啊&#xff0c;每个数字只属于一条连线啊等等&#xff0c;但我们结合题目所给的信息和例图的内容&#xff0c;这不就是最长公共子序列吗&#xff1f;&#xff0c;我们把最长公共子序列连线起…...

网页端 js 读取发票里的二维码信息(图片和PDF格式)

起因 为了实现在报销流程中&#xff0c;发票不能重用的限制&#xff0c;发票上传后&#xff0c;希望能读出发票号&#xff0c;并记录发票号已用&#xff0c;下次不再可用于报销。 基于上面的需求&#xff0c;研究了OCR 的方式和读PDF的方式&#xff0c;实际是可行的&#xff…...

MeshGPT 笔记

[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭&#xff01;_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...

Appium下载安装配置保姆教程(图文详解)

目录 一、Appium软件介绍 1.特点 2.工作原理 3.应用场景 二、环境准备 安装 Node.js 安装 Appium 安装 JDK 安装 Android SDK 安装Python及依赖包 三、安装教程 1.Node.js安装 1.1.下载Node 1.2.安装程序 1.3.配置npm仓储和缓存 1.4. 配置环境 1.5.测试Node.j…...

qt+vs Generated File下的moc_和ui_文件丢失导致 error LNK2001

qt 5.9.7 vs2013 qt add-in 2.3.2 起因是添加一个新的控件类&#xff0c;直接把源文件拖进VS的项目里&#xff0c;然后VS卡住十秒&#xff0c;然后编译就报一堆 error LNK2001 一看项目的Generated Files下的moc_和ui_文件丢失了一部分&#xff0c;导致编译的时候找不到了。因…...

41道Django高频题整理(附答案背诵版)

解释一下 Django 和 Tornado 的关系&#xff1f; Django和Tornado都是Python的web框架&#xff0c;但它们的设计哲学和应用场景有所不同。 Django是一个高级的Python Web框架&#xff0c;鼓励快速开发和干净、实用的设计。它遵循MVC设计&#xff0c;并强调代码复用。Django有…...

基于stm32F10x 系列微控制器的智能电子琴(附完整项目源码、详细接线及讲解视频)

注&#xff1a;文章末尾网盘链接中自取成品使用演示视频、项目源码、项目文档 所用硬件&#xff1a;STM32F103C8T6、无源蜂鸣器、44矩阵键盘、flash存储模块、OLED显示屏、RGB三色灯、面包板、杜邦线、usb转ttl串口 stm32f103c8t6 面包板 …...

2025.6.9总结(利与弊)

凡事都有两面性。在大厂上班也不例外。今天找开发定位问题&#xff0c;从一个接口人不断溯源到另一个 接口人。有时候&#xff0c;不知道是谁的责任填。将工作内容分的很细&#xff0c;每个人负责其中的一小块。我清楚的意识到&#xff0c;自己就是个可以随时替换的螺丝钉&…...

【Ftrace 专栏】Ftrace 参考博文

ftrace、perf、bcc、bpftrace、ply、simple_perf的使用Ftrace 基本用法Linux 利用 ftrace 分析内核调用如何利用ftrace精确跟踪特定进程调度信息使用 ftrace 进行追踪延迟Linux-培训笔记-ftracehttps://www.kernel.org/doc/html/v4.18/trace/events.htmlhttps://blog.csdn.net/…...

CppCon 2015 学习:Reactive Stream Processing in Industrial IoT using DDS and Rx

“Reactive Stream Processing in Industrial IoT using DDS and Rx” 是指在工业物联网&#xff08;IIoT&#xff09;场景中&#xff0c;结合 DDS&#xff08;Data Distribution Service&#xff09; 和 Rx&#xff08;Reactive Extensions&#xff09; 技术&#xff0c;实现 …...

python打卡第47天

昨天代码中注意力热图的部分顺移至今天 知识点回顾&#xff1a; 热力图 作业&#xff1a;对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图&#xff0c;展示模…...

大数据驱动企业决策智能化的路径与实践

&#x1f4dd;个人主页&#x1f339;&#xff1a;慌ZHANG-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 一、引言&#xff1a;数据驱动的企业竞争力重构 在这个瞬息万变的商业时代&#xff0c;“快者胜”的竞争逻辑愈发明显。企业如何在复杂环…...

深入理解 React 样式方案

React 的样式方案较多,在应用开发初期,开发者需要根据项目业务具体情况选择对应样式方案。React 样式方案主要有: 1. 内联样式 2. module css 3. css in js 4. tailwind css 这些方案中,均有各自的优势和缺点。 1. 方案优劣势 1. 内联样式: 简单直观,适合动态样式和…...

高抗扰度汽车光耦合器的特性

晶台光电推出的125℃光耦合器系列产品&#xff08;包括KL357NU、KL3H7U和KL817U&#xff09;&#xff0c;专为高温环境下的汽车应用设计&#xff0c;具备以下核心优势和技术特点&#xff1a; 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计&#xff0c;确保在…...

13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析

LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...

如何做好一份技术文档?从规划到实践的完整指南

如何做好一份技术文档&#xff1f;从规划到实践的完整指南 &#x1f31f; 嗨&#xff0c;我是IRpickstars&#xff01; &#x1f30c; 总有一行代码&#xff0c;能点亮万千星辰。 &#x1f50d; 在技术的宇宙中&#xff0c;我愿做永不停歇的探索者。 ✨ 用代码丈量世界&…...

SQL注入篇-sqlmap的配置和使用

在之前的皮卡丘靶场第五期SQL注入的内容中我们谈到了sqlmap&#xff0c;但是由于很多朋友看不了解命令行格式&#xff0c;所以是纯手动获取数据库信息的 接下来我们就用sqlmap来进行皮卡丘靶场的sql注入学习&#xff0c;链接&#xff1a;https://wwhc.lanzoue.com/ifJY32ybh6vc…...

起重机起升机构的安全装置有哪些?

起重机起升机构的安全装置是保障吊装作业安全的关键部件&#xff0c;主要用于防止超载、失控、断绳等危险情况。以下是常见的安全装置及其功能和原理&#xff1a; 一、超载保护装置&#xff08;核心安全装置&#xff09; 1. 起重量限制器 功能&#xff1a;实时监测起升载荷&a…...

Python的__call__ 方法

在 Python 中&#xff0c;__call__ 是一个特殊的魔术方法&#xff08;magic method&#xff09;&#xff0c;它允许一个类的实例像函数一样被调用。当你在一个对象后面加上 () 并执行时&#xff08;例如 obj()&#xff09;&#xff0c;Python 会自动调用该对象的 __call__ 方法…...

Linux操作系统共享Windows操作系统的文件

目录 一、共享文件 二、挂载 一、共享文件 点击虚拟机选项-设置 点击选项&#xff0c;设置文件夹共享为总是启用&#xff0c;点击添加&#xff0c;可添加需要共享的文件夹 查询是否共享成功 ls /mnt/hgfs 如果显示Download&#xff08;这是我共享的文件夹&#xff09;&…...

Redis上篇--知识点总结

Redis上篇–解析 本文大部分知识整理自网上&#xff0c;在正文结束后都会附上参考地址。如果想要深入或者详细学习可以通过文末链接跳转学习。 1. 基本介绍 Redis 是一个开源的、高性能的 内存键值数据库&#xff0c;Redis 的键值对中的 key 就是字符串对象&#xff0c;而 val…...

Java多线程实现之Runnable接口深度解析

Java多线程实现之Runnable接口深度解析 一、Runnable接口概述1.1 接口定义1.2 与Thread类的关系1.3 使用Runnable接口的优势 二、Runnable接口的基本实现方式2.1 传统方式实现Runnable接口2.2 使用匿名内部类实现Runnable接口2.3 使用Lambda表达式实现Runnable接口 三、Runnabl…...

李沐--动手学深度学习--GRU

1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...

raid存储技术

1. 存储技术概念 数据存储架构是对数据存储方式、存储设备及相关组件的组织和规划&#xff0c;涵盖存储系统的布局、数据存储策略等&#xff0c;它明确数据如何存储、管理与访问&#xff0c;为数据的安全、高效使用提供支撑。 由计算机中一组存储设备、控制部件和管理信息调度的…...

LUA+Reids实现库存秒杀预扣减 记录流水 以及自己的思考

目录 lua脚本 记录流水 记录流水的作用 流水什么时候删除 我们在做库存扣减的时候&#xff0c;显示基于Lua脚本和Redis实现的预扣减 这样可以在秒杀扣减的时候保证操作的原子性和高效性 lua脚本 // ... 已有代码 ...Overridepublic InventoryResponse decrease(Inventor…...

EasyRTC音视频实时通话功能在WebRTC与智能硬件整合中的应用与优势

一、WebRTC与智能硬件整合趋势​ 随着物联网和实时通信需求的爆发式增长&#xff0c;WebRTC作为开源实时通信技术&#xff0c;为浏览器与移动应用提供免插件的音视频通信能力&#xff0c;在智能硬件领域的融合应用已成必然趋势。智能硬件不再局限于单一功能&#xff0c;对实时…...

【版本控制】GitHub Desktop 入门教程与开源协作全流程解析

目录 0 引言1 GitHub Desktop 入门教程1.1 安装与基础配置1.2 核心功能使用指南仓库管理日常开发流程分支管理 2 GitHub 开源协作流程详解2.1 Fork & Pull Request 模型2.2 完整协作流程步骤步骤 1: Fork&#xff08;创建个人副本&#xff09;步骤 2: Clone&#xff08;克隆…...