【使用时空RBF-NN进行非线性系统识别】实现了 RBF、分数 RBF 和时空 RBF 神经网络,用于非线性系统识别研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
2.1 算例1
2.2 算例2
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
本文用于非线性系统识别任务的径向基函数神经网络(RBF-NN)的三种变体。特别是,我实现了具有常规和分数梯度下降的RBF,并将性能与时空RBF-NN进行了比较。
时空RBF-NN(Radial Basis Function Neural Network)是一种用于非线性系统识别的方法,它将RBF神经网络与时空数据建模相结合。由于非线性系统的行为通常涉及时空关系,时空RBF-NN能够更好地捕捉系统动态,并用于模型识别和预测。
实现时空RBF-NN进行非线性系统识别的基本步骤如下:
1. 数据采集:收集非线性系统的时空数据,包括系统的输入和输出。这些数据用于构建和训练时空RBF-NN模型。
2. RBF神经网络:构建RBF神经网络作为时空RBF-NN的基本模块。RBF神经网络使用径向基函数作为其激活函数,可以通过调整基函数的参数来适应不同的数据模式和非线性关系。
3. 分数RBF:对于具有长期记忆依赖关系的系统,可以考虑使用分数RBF。分数RBF可以捕捉到时间序列中的长期依赖现象,从而提高系统的建模和预测能力。
4. 时空数据建模:将时空数据建模为时空RBF-NN模型。在模型中,输入向量包含过去时刻的输入值和输出值,以捕获系统的历史信息。输出向量则是当前时刻的输出值。
5. 模型训练:使用收集到的时空数据对时空RBF-NN模型进行训练。通过调整模型的参数和基函数的参数,使模型能够更好地拟合和预测系统的动态特性。
6. 模型评估与预测:对训练好的时空RBF-NN模型进行评估。使用测试数据对模型进行验证,并分析模型的预测性能和适应性。
通过实现RBF、分数RBF和时空RBF神经网络,并应用于非线性系统识别研究,可以更好地理解和预测复杂系统的行为。然而,具体的实现细节和参数设置可能因系统的特点和研究目的而有所不同,需要根据具体情况进行调整和优化。
📚2 运行结果
2.1 算例1
2.2 算例2
部分代码:
meu_c = 1e-2;% Step size
meu_st = 1e-2;% Step size
meu_f = 1e-2;% Step size
len = 1000; % Length of the signal
runs = 500; % Number of times signal passes through ADF for weight adaptation
x=[ones(1,round(len/4)) -ones(1,round(len/4)) ones(1,round(len/4)) -ones(1,round(len/4))];
x=awgn(x,10);
%% Defining Unknown System
h = [2 -0.5 -0.1 -0.7 3];
c = [-5:2:5];
n1=length(c);
W_c = randn(1,n1); % Weights
W_f = randn(1,n1); % Weights
W_st = randn(3,n1); % Weights
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]han, Shujaat, et al. “A Novel Adaptive Kernel for the RBF Neural Networks.” Circuits, Systems, and Signal Processing, vol. 36, no. 4, Springer Nature, July 2016, pp. 1639–53, doi:10.1007/s00034-016-0375-7.
[2]Khan, Shujaat, et al. “A Fractional Gradient Descent-Based RBF Neural Network.” Circuits, Systems, and Signal Processing, vol. 37, no. 12, Springer Nature America, Inc, May 2018, pp. 5311–32, doi:10.1007/s00034-018-0835-3.
[3]Khan, Shujaat, et al. “Spatio-Temporal RBF Neural Networks.” 2018 3rd {IEEE} International Conference on Emerging Trends in Engineering, Sciences and Technology ({ICEEST}), {IEEE}, 2018
🌈4 Matlab代码实现
相关文章:

【使用时空RBF-NN进行非线性系统识别】实现了 RBF、分数 RBF 和时空 RBF 神经网络,用于非线性系统识别研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

Tomcat 安装配置教程及成功后,启动失败报错解决方案
解决方案 我的报错原因是因为我的JDK是1.8的而我的Tomcat是10版本的,可能是因为版本原因吧,我重新装了Tomcat 9就可以启动成功了! 简单说下安装的时候需要注意哪些步骤吧 今天我在安装tomcat10的时候,安装成功后,启…...

C#文件操作从入门到精通(2)——查看某个dll中有哪些函数
kernel32.dll中含有ini文件操作使用的函数,我们可以通过VisualStudio自带的dumpbin.exe查看dll所包含的函数,操作步骤如下: 1、找到dumpbin.exe所在的文件夹 我的电脑中安装了VisualStudio2019社区版以及VisualStudio2017Professional,但是我发现VisualStudio2019社区版中…...

二分查找算法(全网最详细代码演示)
二分查找也称 半查找(Binary Search),它时一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字 有序 排列。 注意:使用二分查找的前提是 该数组是有序的。 在实际开…...

draw up a plan
爱情是美好的,却不是唯一的。爱情只是属于个人化的感情。 推荐一篇关于爱情的美文: 在一个小镇上,有一家以制作精美巧克力而闻名的手工巧克力店,名叫“甜蜜之爱”。这家巧克力店是由一位名叫艾玛的年轻女性经营的,她对…...

抖音seo源码开发源代码开发技术分享
一、 抖音SEO源码开发,需要掌握以下技术: 抖音API接口:抖音提供了丰富的API接口,包括用户信息、视频信息、评论信息等。 数据爬取技术:通过抓包分析抖音接口的数据结构,可以使用Python等编程语言编写爬虫程…...
QEMU(Quick Emulator)
QEMU(Quick Emulator)是一款由法布里斯贝拉等人编写的免费的可执行硬件虚拟化的开源托管虚拟机。它可以通过动态的二进制转换模拟CPU,并提供一组设备模型,使它能够运行多种未修改的客户机OS。QEMU还可以为user-level的进程执行CPU…...
Gateway结合nacos(lb://xxx)无效问题
Gateway结合nacos无效 版本如下: com.alibaba.cloud:spring-cloud-starter-alibaba-nacos-discovery:2021.0.1.0 org.springframework.cloud:spring-cloud-starter-gateway:3.1.1 配置如下: server:port: 7000 spring:application:name: springCloudGa…...

NODEJS笔记
全局对象 global/window console.log/info/warn/error/time/timeEnd process.arch/platform/version/env/kill/pid/nextTick Buffer.alloc(5,abcde) String/toString setTimeout/clearTimeout setInterval/clearInterval setImmediate/clearImmediate process.nextTi…...
无涯教程-jQuery - html( )方法函数
html(val)方法获取第一个匹配元素的html内容(innerHTML)。此属性在XML文档上不可用。 html( ) - 语法 selector.html( ) html( ) - 示例 以下是一个简单的示例,简单说明了此方法的用法- <html><head><title>The jQuery Example</title>…...

Linux vsftp三种模式的简单配置部署
环境:Debian 6.1.27-1kali1 (2023-05-12) vsftpd 安装 --查看是否当前系统是否已安装 apt list --installed | grep vsftpd 没有安装的话,就正常安装 apt-get update apt-get install vsftpd 一、匿名用户模式 分享一些不重要文件,任…...

6.1.tensorRT高级(1)-概述
目录 前言1. tensorRT高级概述总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程,之前有看过一遍,但是没有做笔记,很多东西也忘了。这次重新撸一遍,顺便记记笔记。 本次课程学习 tensorRT 高级-概述 课程大纲可看下面的思维…...
【Python】将M4A\AAC录音文件转换为MP3文件
文章目录 m4aaac 基础环境: sudo apt-get install ffmpegm4a 要将M4A文件转换为MP3文件,你可以使用Python中的第三方库pydub。pydub使得音频处理变得非常简单。在开始之前,请确保你已经安装了pydub库,如果没有,可以通…...
个性新颖纯css手风琴效果选项卡
当涉及到个性新颖的纯CSS手风琴效果选项卡时,有多种方法可以实现。以下是三种可能的方法: 三种方法实现 方法一:使用:target伪类和CSS过渡效果 <style>.accordion {width: 300px;}.accordion-item {overflow: hidden;max-height: 0;…...
js的sendBeacon方法介绍
js的sendBeacon方法介绍 Beacon API是一种轻量级且有效的将网页活动记录到服务器的方法。它是一个 JavaScript API,可帮助开发人员将少量数据(例如分析或跟踪信息、调试或诊断数据)从浏览器发送到服务器。 在本文中,我们将介绍B…...

【Tomcat---1】IDEA控制台tomcat日志输出乱码解决
一、修改IDEA的文件编码配置为UTF-8 二、修改IDEA的vmoptions文件,添加-Dfile.encodingUTF-8 到Tomcat目录/conf文件夹修改logging.properties 重启idea即可。采用统一的编码...
Redis学习路线(2)—— Redis的数据结构
一、Redis的数据结构 Redis是一个Key-Value的数据库,key一般是String类型,不过Value的类型却有很多: String: Hello WorldHash: {name: "jack", age: 21}List: [A -> B -> C -> C]Set…...

【Redis深度专题】「核心技术提升」探究Redis服务启动的过程机制的技术原理和流程分析的指南(持久化功能分析)
探究Redis服务启动的过程机制的技术原理和流程分析的指南(持久化功能分析) Redis提供的持久化机制Redis持久化如何工作Redis持久化的故障分析持久化频率操作分析数据库多久调用一次write,将数据写入内核缓冲区?内核多久将系统缓冲…...
IT管理者年过50后何去何从
最近面试了一位前职为IT技术及管理专家,知名院校硕士毕业,唯一不同的是,他是一名已过50岁的IT技术及管理者。一直知道过了50岁,我们估计会有很大的坎,但是那时候从未曾想过连我们保险公司都会因为年龄而拒绝这样优秀的…...
C++字符串题基础(进阶请看下一个文章)
打印小写字母表 #include<iostream> #include<string.h> #include<iomanip> #include<stdio.h> #include<cmath> using namespace std; int main() {char na;for(int i1;i<13;i){cout<<n;n;}cout<<endl;for(int i1;i<13;i){c…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

Razor编程中@Html的方法使用大全
文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

结构化文件管理实战:实现目录自动创建与归类
手动操作容易因疲劳或疏忽导致命名错误、路径混乱等问题,进而引发后续程序异常。使用工具进行标准化操作,能有效降低出错概率。 需要快速整理大量文件的技术用户而言,这款工具提供了一种轻便高效的解决方案。程序体积仅有 156KB,…...

EEG-fNIRS联合成像在跨频率耦合研究中的创新应用
摘要 神经影像技术对医学科学产生了深远的影响,推动了许多神经系统疾病研究的进展并改善了其诊断方法。在此背景下,基于神经血管耦合现象的多模态神经影像方法,通过融合各自优势来提供有关大脑皮层神经活动的互补信息。在这里,本研…...