获取非叶子节点的grad(retain_grad()、hook)【为了解决grad值是None的问题】
在调试过程中, 有时候我们需要对中间变量梯度进行监控, 以确保网络的有效性, 这个时候我们需要打印出非叶节点的梯度, 为了实现这个目的, 我们可以通过两种手段进行, 分别是:
- retain_grad()
- hook
不过我感觉“hook”比“retain_grad()”要麻烦.....,所以我感觉还是使用“retain_grad()”吧
1、retain_grad()
retain_grad()显式地保存非叶节点的梯度, 代价就是会增加显存的消耗(对比hook函数的方法则是在反向计算时直接打印, 因此不会增加显存消耗.)
使用方法:
直接在forward中对你想要输出gred的tensor“.retain_grad()”即可:tensor.retain_grad()
import torchdef forwrad(x, y, w1, w2):# 其中 x,y 为输入数据,w为该函数所需要的参数z_1 = torch.mm(w1, x)z_1.retain_grad()y_1 = torch.sigmoid(z_1)y_1.retain_grad()z_2 = torch.mm(w2, y_1)z_2.retain_grad()y_2 = torch.sigmoid(z_2)# y_2.retain_grad()loss = 1 / 2 * (((y_2 - y) ** 2).sum())return loss, z_1, y_1, z_2, y_2# 测试代码
x = torch.tensor([[1.0]])
y = torch.tensor([[1.0], [0.0]])
w1 = torch.tensor([[1.0], [2.0]], requires_grad=True)
w2 = torch.tensor([[3.0, 4.0], [5.0, 6.0]], requires_grad=True)
# 正向
loss, z_1, y_1, z_2, y_2 = forwrad(x, y, w1, w2)
# 反向
loss.backward() # 反向传播,计算梯度print(loss.grad)print(y_2.grad)print(z_2.grad)# 输出结果是否是None,如果是None-->True
def is_none(obj):return obj is None
# 打印出非叶子结点的gred
print(is_none(z_1.grad))
print(is_none(y_2.grad))
print(z_2.grad)
注意:不要对保存梯度的变量做任何修改,例如:z_1, y_1, z_2, y_2,修改为gred_list = [z_1, y_1, z_2, y_2],然后输入梯度值,那是错误的,要直接一个一个输出,不要做任何操作
2、hook的使用
使用retain_grad会消耗额外的显存, 我们可以使用hook在反向计算的时候进行保存. 还是上面的例子, 我们使用hook来完成.
import torch# 我们可以定义一个hook来保存中间的变量
grads = {} # 存储节点名称与节点的grad
def save_grad(name):def hook(grad):grads[name] = gradreturn hookdef forwrad(x, y, w1, w2):# 其中 x,y 为输入数据,w为该函数所需要的参数z_1 = torch.mm(w1, x)y_1 = torch.sigmoid(z_1)z_2 = torch.mm(w2, y_1)y_2 = torch.sigmoid(z_2)loss = 1/2*(((y_2 - y)**2).sum())return loss, z_1, y_1, z_2, y_2# 测试代码
x = torch.tensor([[1.0]])
y = torch.tensor([[1.0], [0.0]])
w1 = torch.tensor([[1.0], [2.0]], requires_grad=True)
w2 = torch.tensor([[3.0, 4.0], [5.0, 6.0]], requires_grad=True)
# 正向传播
loss, z_1, y_1, z_2, y_2 = forwrad(x, y, w1, w2)# hook中间节点
z_1.register_hook(save_grad('z_1'))
y_1.register_hook(save_grad('y_1'))
z_2.register_hook(save_grad('z_2'))
y_2.register_hook(save_grad('y_2'))# 反向传播
loss.backward()
print(grads['z_1'])
print(grads['y_1'])
print(grads['z_2'])
print(grads['y_2'])
https://www.cnblogs.com/dxscode/p/16146470.html
pytorch | loss不收敛或者训练中梯度grad为None的问题_pytorch梯度为none_Rilkean heart的博客-CSDN博客
相关文章:
获取非叶子节点的grad(retain_grad()、hook)【为了解决grad值是None的问题】
在调试过程中, 有时候我们需要对中间变量梯度进行监控, 以确保网络的有效性, 这个时候我们需要打印出非叶节点的梯度, 为了实现这个目的, 我们可以通过两种手段进行, 分别是: retain_grad()hook 不过我感觉“hook”比“retain_grad()”要麻烦.....,所以我感觉还是…...
JMeter(八):响应断言详解
响应断言 :对服务器的响应进行断言校验 (1)应用范围: main sample and sub sample, main sample only , sub-sample only , jmeter variable 关于应用范围,我们大多数勾选“main sample only” 就足够了,因为我们一个请求,实质上只有一个请求。但是当我们发一个请求时,…...
【网络编程】IO复用的应用一:非阻塞connect
在connect连接中,若socket以非阻塞的方式进行连接,则系统内设置的TCP三次握手超时时间为0,所以它不会等待TCP三次握手完成,直接返回,错误为EINPROGRESS。 所以,我们可以通过判断connect时返回的错误码是…...
Spring注解开发,bean的作用范围及生命周期、Spring注解开发依赖注入
🐌个人主页: 🐌 叶落闲庭 💨我的专栏:💨 c语言 数据结构 javaweb 石可破也,而不可夺坚;丹可磨也,而不可夺赤。 Spring注解开发 一、注解开发定义Bean二、纯注解开发Bean三…...
C#设计模式之---原型模式
原型模式(Prototype Pattern) 原型模式(Prototype Pattern) 是用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象。原型模式是一种创建型设计模式。也就是用一个已经创建的实例作为原型,通过…...
STM32入门学习之外部中断
1.STM32的IO口可以作为外部中断输入口。本文通过按键按下作为外部中断的输入,点亮LED灯。在STM32的19个外部中断中,0-15为外部IO口的中断输入口。STM32的引脚分别对应着0-15的外部中断线。比如,外部中断线0对应着GPIOA.0-GPIOG.0,…...
Jenkins 配置maven和jdk
前提:服务器已经安装maven和jdk 一、在Jenkins中添加全局变量 系统管理–>系统配置–>全局属性–>环境变量 添加三个全局变量 JAVA_HOME、MAVEN_HOME、PATH 二、配置maven 系统管理–>全局工具配置–>maven–>新增 新增配置 三、配置JDK 在系统管…...
Leetcode | Binary search | 22. 74. 162. 33. 34. 153.
22. Generate Parentheses 要意识到只要还有左括号,就可以放到path里。只要右括号数量小于左括号,也可以放进去。就是valid的组合。recurse两次 74. Search a 2D Matrix 看成sorted list就好。直接用m*n表示最后一位的index,并且每次只需要 …...
生命在于折腾——面试问题汇总
这里面的问题都是我参加面试时候遇到的问题,大家就这样看吧。 一、个人情况 1、自我介绍 2、为什么离开上一家公司 3、有没有参加过HVV 4、介绍一下上家公司的项目 5、小程序和公众号渗透测试做过么 6、实习工资多少 7、有挖过漏洞么 二、基础知识 1、信息收集的…...
<Java>Map<String,Object>中解析Object类型数据为数组格式
背景: 前端:入参为字符串和数组类型;通过json字符串传给后台, 后台:后台通过工具解析为Map<String,Object>,然后需要解析出Map里面的数组值做操作; 需求: 入参&…...
别再分库分表了,试试TiDB!
什么是NewSQL 传统SQL的问题 升级服务器硬件 数据分片 NoSQL 的问题 优点 缺点 NewSQL 特性 NewSQL 的主要特性 三种SQL的对比 TiDB怎么来的 TiDB社区版和企业版 TIDB核心特性 水平弹性扩展 分布式事务支持 金融级高可用 实时 HTAP 云原生的分布式数据库 高度兼…...
Java进阶之Dump文件初体验
视频地址:https://www.bilibili.com/video/BV1Ak4y137oh 学习文章:https://d9bp4nr5ye.feishu.cn/wiki/VQoAwlzrXiLFZekuLIyc1uK5nqc 最近线上频繁的内存告警,同事A通过分析dump文件解决了这个问题,我当然是不会放过这种学习的机…...
基于扩展(EKF)和无迹卡尔曼滤波(UKF)的电力系统动态状态估计(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
曲线拟合(MATLAB拟合工具箱)位置前馈量计算(压力闭环控制应用)
利用PLC进行压力闭环控制的项目背景介绍请查看下面文章链接,这里不再赘述。 信捷PLC压力闭环控制应用(C语言完整PD、PID源代码)_RXXW_Dor的博客-CSDN博客闭环控制的系列文章,可以查看PID专栏的的系列文章,链接如下:张力控制之速度闭环(速度前馈量计算)_RXXW_Dor的博客-CSD…...
小程序使用echarts
参考文档:echarts官网、echarts-for-weixin 第一步引入组件库,可直接从echarts-for-weixin下载,也可以从echarts官网自定义生成,这里我们就不贴了组件库引入好后,就是页面引用啦,废话不多说,直…...
面向对象——封装
C面向对象的三大特性为:封装、继承、多态 C认为万事万物都皆为对象,对象上有其属性和行为 例如: 人可以作为对象,属性有姓名、年龄、身高、体重…,行为有走、跑、跳、吃饭、唱歌… 车也可以作为对象…...
【LeetCode】160.相交链表
题目 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 图示两个链表在节点 c1 开始相交: 题目数据 保证 整个链式结构中不存在环。 注意,函数返回结…...
【JWT的使用】
文章目录 前言1、用户登录1.1 JWTThreadLocal 2.1 代码实现2.1.1 ThreadLocal工具类2.2.2 定义拦截器2.2.3 注册拦截器 前言 1、用户登录 1.1 JWT JSON Web Token简称JWT,用于对应用程序上用户进行身份验证的标记。使用 JWTS 之后不需要保存用户的 cookie 或其他…...
Python获取音视频时长
Python获取音视频时长 Python获取音视频时长1、安装插件2、获取音视频时长.py3、打包exe4、下载地址 Python获取音视频时长 1、安装插件 pip install moviepy -i https://pypi.tuna.tsinghua.edu.cn/simple2、获取音视频时长.py 上代码:获取音视频时长.py # -*-…...
TCP四次握手为什么客户端等待的时间是2MSL
目录 什么是MSL从第三次握手开始分析总结 什么是MSL MSL是Maximum Segment Lifetime英文的缩写,中文可以译为“报文最大生存时间”,他是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。 从第三次握手开始分析 第三次握手服务端…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
