获取非叶子节点的grad(retain_grad()、hook)【为了解决grad值是None的问题】
在调试过程中, 有时候我们需要对中间变量梯度进行监控, 以确保网络的有效性, 这个时候我们需要打印出非叶节点的梯度, 为了实现这个目的, 我们可以通过两种手段进行, 分别是:
- retain_grad()
- hook
不过我感觉“hook”比“retain_grad()”要麻烦.....,所以我感觉还是使用“retain_grad()”吧
1、retain_grad()
retain_grad()显式地保存非叶节点的梯度, 代价就是会增加显存的消耗(对比hook函数的方法则是在反向计算时直接打印, 因此不会增加显存消耗.)
使用方法:
直接在forward中对你想要输出gred的tensor“.retain_grad()”即可:tensor.retain_grad()
import torchdef forwrad(x, y, w1, w2):# 其中 x,y 为输入数据,w为该函数所需要的参数z_1 = torch.mm(w1, x)z_1.retain_grad()y_1 = torch.sigmoid(z_1)y_1.retain_grad()z_2 = torch.mm(w2, y_1)z_2.retain_grad()y_2 = torch.sigmoid(z_2)# y_2.retain_grad()loss = 1 / 2 * (((y_2 - y) ** 2).sum())return loss, z_1, y_1, z_2, y_2# 测试代码
x = torch.tensor([[1.0]])
y = torch.tensor([[1.0], [0.0]])
w1 = torch.tensor([[1.0], [2.0]], requires_grad=True)
w2 = torch.tensor([[3.0, 4.0], [5.0, 6.0]], requires_grad=True)
# 正向
loss, z_1, y_1, z_2, y_2 = forwrad(x, y, w1, w2)
# 反向
loss.backward() # 反向传播,计算梯度print(loss.grad)print(y_2.grad)print(z_2.grad)# 输出结果是否是None,如果是None-->True
def is_none(obj):return obj is None
# 打印出非叶子结点的gred
print(is_none(z_1.grad))
print(is_none(y_2.grad))
print(z_2.grad)
注意:不要对保存梯度的变量做任何修改,例如:z_1, y_1, z_2, y_2,修改为gred_list = [z_1, y_1, z_2, y_2],然后输入梯度值,那是错误的,要直接一个一个输出,不要做任何操作
2、hook的使用
使用retain_grad会消耗额外的显存, 我们可以使用hook在反向计算的时候进行保存. 还是上面的例子, 我们使用hook来完成.
import torch# 我们可以定义一个hook来保存中间的变量
grads = {} # 存储节点名称与节点的grad
def save_grad(name):def hook(grad):grads[name] = gradreturn hookdef forwrad(x, y, w1, w2):# 其中 x,y 为输入数据,w为该函数所需要的参数z_1 = torch.mm(w1, x)y_1 = torch.sigmoid(z_1)z_2 = torch.mm(w2, y_1)y_2 = torch.sigmoid(z_2)loss = 1/2*(((y_2 - y)**2).sum())return loss, z_1, y_1, z_2, y_2# 测试代码
x = torch.tensor([[1.0]])
y = torch.tensor([[1.0], [0.0]])
w1 = torch.tensor([[1.0], [2.0]], requires_grad=True)
w2 = torch.tensor([[3.0, 4.0], [5.0, 6.0]], requires_grad=True)
# 正向传播
loss, z_1, y_1, z_2, y_2 = forwrad(x, y, w1, w2)# hook中间节点
z_1.register_hook(save_grad('z_1'))
y_1.register_hook(save_grad('y_1'))
z_2.register_hook(save_grad('z_2'))
y_2.register_hook(save_grad('y_2'))# 反向传播
loss.backward()
print(grads['z_1'])
print(grads['y_1'])
print(grads['z_2'])
print(grads['y_2'])
https://www.cnblogs.com/dxscode/p/16146470.html
pytorch | loss不收敛或者训练中梯度grad为None的问题_pytorch梯度为none_Rilkean heart的博客-CSDN博客
相关文章:
获取非叶子节点的grad(retain_grad()、hook)【为了解决grad值是None的问题】
在调试过程中, 有时候我们需要对中间变量梯度进行监控, 以确保网络的有效性, 这个时候我们需要打印出非叶节点的梯度, 为了实现这个目的, 我们可以通过两种手段进行, 分别是: retain_grad()hook 不过我感觉“hook”比“retain_grad()”要麻烦.....,所以我感觉还是…...
JMeter(八):响应断言详解
响应断言 :对服务器的响应进行断言校验 (1)应用范围: main sample and sub sample, main sample only , sub-sample only , jmeter variable 关于应用范围,我们大多数勾选“main sample only” 就足够了,因为我们一个请求,实质上只有一个请求。但是当我们发一个请求时,…...
【网络编程】IO复用的应用一:非阻塞connect
在connect连接中,若socket以非阻塞的方式进行连接,则系统内设置的TCP三次握手超时时间为0,所以它不会等待TCP三次握手完成,直接返回,错误为EINPROGRESS。 所以,我们可以通过判断connect时返回的错误码是…...
Spring注解开发,bean的作用范围及生命周期、Spring注解开发依赖注入
🐌个人主页: 🐌 叶落闲庭 💨我的专栏:💨 c语言 数据结构 javaweb 石可破也,而不可夺坚;丹可磨也,而不可夺赤。 Spring注解开发 一、注解开发定义Bean二、纯注解开发Bean三…...
C#设计模式之---原型模式
原型模式(Prototype Pattern) 原型模式(Prototype Pattern) 是用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象。原型模式是一种创建型设计模式。也就是用一个已经创建的实例作为原型,通过…...
STM32入门学习之外部中断
1.STM32的IO口可以作为外部中断输入口。本文通过按键按下作为外部中断的输入,点亮LED灯。在STM32的19个外部中断中,0-15为外部IO口的中断输入口。STM32的引脚分别对应着0-15的外部中断线。比如,外部中断线0对应着GPIOA.0-GPIOG.0,…...
Jenkins 配置maven和jdk
前提:服务器已经安装maven和jdk 一、在Jenkins中添加全局变量 系统管理–>系统配置–>全局属性–>环境变量 添加三个全局变量 JAVA_HOME、MAVEN_HOME、PATH 二、配置maven 系统管理–>全局工具配置–>maven–>新增 新增配置 三、配置JDK 在系统管…...
Leetcode | Binary search | 22. 74. 162. 33. 34. 153.
22. Generate Parentheses 要意识到只要还有左括号,就可以放到path里。只要右括号数量小于左括号,也可以放进去。就是valid的组合。recurse两次 74. Search a 2D Matrix 看成sorted list就好。直接用m*n表示最后一位的index,并且每次只需要 …...
生命在于折腾——面试问题汇总
这里面的问题都是我参加面试时候遇到的问题,大家就这样看吧。 一、个人情况 1、自我介绍 2、为什么离开上一家公司 3、有没有参加过HVV 4、介绍一下上家公司的项目 5、小程序和公众号渗透测试做过么 6、实习工资多少 7、有挖过漏洞么 二、基础知识 1、信息收集的…...
<Java>Map<String,Object>中解析Object类型数据为数组格式
背景: 前端:入参为字符串和数组类型;通过json字符串传给后台, 后台:后台通过工具解析为Map<String,Object>,然后需要解析出Map里面的数组值做操作; 需求: 入参&…...
别再分库分表了,试试TiDB!
什么是NewSQL 传统SQL的问题 升级服务器硬件 数据分片 NoSQL 的问题 优点 缺点 NewSQL 特性 NewSQL 的主要特性 三种SQL的对比 TiDB怎么来的 TiDB社区版和企业版 TIDB核心特性 水平弹性扩展 分布式事务支持 金融级高可用 实时 HTAP 云原生的分布式数据库 高度兼…...
Java进阶之Dump文件初体验
视频地址:https://www.bilibili.com/video/BV1Ak4y137oh 学习文章:https://d9bp4nr5ye.feishu.cn/wiki/VQoAwlzrXiLFZekuLIyc1uK5nqc 最近线上频繁的内存告警,同事A通过分析dump文件解决了这个问题,我当然是不会放过这种学习的机…...
基于扩展(EKF)和无迹卡尔曼滤波(UKF)的电力系统动态状态估计(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
曲线拟合(MATLAB拟合工具箱)位置前馈量计算(压力闭环控制应用)
利用PLC进行压力闭环控制的项目背景介绍请查看下面文章链接,这里不再赘述。 信捷PLC压力闭环控制应用(C语言完整PD、PID源代码)_RXXW_Dor的博客-CSDN博客闭环控制的系列文章,可以查看PID专栏的的系列文章,链接如下:张力控制之速度闭环(速度前馈量计算)_RXXW_Dor的博客-CSD…...
小程序使用echarts
参考文档:echarts官网、echarts-for-weixin 第一步引入组件库,可直接从echarts-for-weixin下载,也可以从echarts官网自定义生成,这里我们就不贴了组件库引入好后,就是页面引用啦,废话不多说,直…...
面向对象——封装
C面向对象的三大特性为:封装、继承、多态 C认为万事万物都皆为对象,对象上有其属性和行为 例如: 人可以作为对象,属性有姓名、年龄、身高、体重…,行为有走、跑、跳、吃饭、唱歌… 车也可以作为对象…...
【LeetCode】160.相交链表
题目 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 图示两个链表在节点 c1 开始相交: 题目数据 保证 整个链式结构中不存在环。 注意,函数返回结…...
【JWT的使用】
文章目录 前言1、用户登录1.1 JWTThreadLocal 2.1 代码实现2.1.1 ThreadLocal工具类2.2.2 定义拦截器2.2.3 注册拦截器 前言 1、用户登录 1.1 JWT JSON Web Token简称JWT,用于对应用程序上用户进行身份验证的标记。使用 JWTS 之后不需要保存用户的 cookie 或其他…...
Python获取音视频时长
Python获取音视频时长 Python获取音视频时长1、安装插件2、获取音视频时长.py3、打包exe4、下载地址 Python获取音视频时长 1、安装插件 pip install moviepy -i https://pypi.tuna.tsinghua.edu.cn/simple2、获取音视频时长.py 上代码:获取音视频时长.py # -*-…...
TCP四次握手为什么客户端等待的时间是2MSL
目录 什么是MSL从第三次握手开始分析总结 什么是MSL MSL是Maximum Segment Lifetime英文的缩写,中文可以译为“报文最大生存时间”,他是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。 从第三次握手开始分析 第三次握手服务端…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化
iOS 应用的发布流程一直是开发链路中最“苹果味”的环节:强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说,这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发(例如 Flutter、React Na…...
数据库——redis
一、Redis 介绍 1. 概述 Redis(Remote Dictionary Server)是一个开源的、高性能的内存键值数据库系统,具有以下核心特点: 内存存储架构:数据主要存储在内存中,提供微秒级的读写响应 多数据结构支持&…...
DeepSeek越强,Kimi越慌?
被DeepSeek吊打的Kimi,还有多少人在用? 去年,月之暗面创始人杨植麟别提有多风光了。90后清华学霸,国产大模型六小虎之一,手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水,单月光是投流就花费2个亿。 疯…...
嵌入式面试常问问题
以下内容面向嵌入式/系统方向的初学者与面试备考者,全面梳理了以下几大板块,并在每个板块末尾列出常见的面试问答思路,帮助你既能夯实基础,又能应对面试挑战。 一、TCP/IP 协议 1.1 TCP/IP 五层模型概述 链路层(Link Layer) 包括网卡驱动、以太网、Wi‑Fi、PPP 等。负责…...
鸿蒙Navigation路由导航-基本使用介绍
1. Navigation介绍 Navigation组件是路由导航的根视图容器,一般作为Page页面的根容器使用,其内部默认包含了标题栏、内容区和工具栏,其中内容区默认首页显示导航内容(Navigation的子组件)或非首页显示(Nav…...
mcts蒙特卡洛模拟树思想
您这个观察非常敏锐,而且在很大程度上是正确的!您已经洞察到了MCTS算法在不同阶段的两种不同行为模式。我们来把这个关系理得更清楚一些,您的理解其实离真相只有一步之遥。 您说的“select是在二次选择的时候起作用”,这个观察非…...
