Pytorch深度学习-----神经网络之非线性激活的使用(ReLu、Sigmoid)
系列文章目录
PyTorch深度学习——Anaconda和PyTorch安装
Pytorch深度学习-----数据模块Dataset类
Pytorch深度学习------TensorBoard的使用
Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Compose,RandomCrop)
Pytorch深度学习------torchvision中dataset数据集的使用(CIFAR10)
Pytorch深度学习-----DataLoader的用法
Pytorch深度学习-----神经网络的基本骨架-nn.Module的使用
Pytorch深度学习-----神经网络的卷积操作
Pytorch深度学习-----神经网络之卷积层用法详解
Pytorch深度学习-----神经网络之池化层用法详解及其最大池化的使用
文章目录
- 系列文章目录
- 一、非线性激活是什么?
- 二、ReLU函数
- 1.ReLU函数介绍
- 2.使用Relu函数处理矩阵
- 三、Sigmoid函数
- 1.Sigmoid函数介绍
- 2.使用Sigmoid函数处理CIFAR10数据集
一、非线性激活是什么?
非线性激活是神经网络中的一种操作,它被用于引入非线性特性到神经网络的输出中。在神经网络中,线性操作如加法和乘法只能产生线性变换,而非线性激活函数则允许网络学习非线性关系。
在每个神经元的输出中应用非线性激活函数,可以使得神经网络能够学习和表示更加复杂的函数关系。这是因为非线性激活函数可以对输入数据进行非线性映射,从而增加了网络的表达能力。
常见的非线性激活函数包括sigmoid函数、ReLU函数、tanh函数等。
英文为:Non-linear Activations;官网解释为:Non-linear Activations
二、ReLU函数
1.ReLU函数介绍
首先先查看官网对其解释:如下图所示


可以见到有一个参数inplace,布尔类型,所以具有两种情况
当inplace 为True时,会将输入数据进行替换;当inplace 为False时,输入数据不进行替换。
即:input=-1 经过 Relu(input,inplace=True)后,input=0;
input=-1 经过 Relu(input,inplace=False)后,input=-1;
即将小于0的数据替换为0
由官网的图像可以推测,Relu函数的表达式为

因为input=-1时小于0,故替换为0.
其次:relu函数也是分段线性函数。
2.使用Relu函数处理矩阵
import torch# 准备数据
input = torch.tensor([[1,-1],[-2,3]])# 搭建自己的一个神经网络
class lgl(torch.nn.Module):def __init__(self):super(lgl, self).__init__()# 默认inplace参数为Falseself.relu1 = torch.nn.ReLU()def forward(self,input):output = self.relu1(input)return output# 实例化
l = lgl()
output = l(input)
print(input)
print(output)
输出结果如下:
tensor([[ 1, -1],[-2, 3]])
tensor([[1, 0],[0, 3]])
验证结果,由Relu函数的特点,进行relu后会将小于等于0的数值替换为0,大于0的数值保持不变,故上述结果正确。同时inplace默认是False,故输入不会改变。
下面将inplace=True
import torch# 准备数据
input = torch.tensor([[1,-1],[-2,3]])# 搭建自己的一个神经网络
class lgl(torch.nn.Module):def __init__(self):super(lgl, self).__init__()# 同时将inplace参数设置为Trueself.relu1 = torch.nn.ReLU(inplace=True)def forward(self,input):output = self.relu1(input)return output# 实例化
l = lgl()
output = l(input)
print(input)
print(output)
输出结果如下:
tensor([[1, 0],[0, 3]])
tensor([[1, 0],[0, 3]])
三、Sigmoid函数
1.Sigmoid函数介绍
首先先查看官网,对其解释如下图所示

函数表达式如下

函数取值范围为(0,1)
2.使用Sigmoid函数处理CIFAR10数据集
代码如下:
import torch
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter# 准备cifar10数据集
test_set = torchvision.datasets.CIFAR10("dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 加载器
dataloader = DataLoader(test_set,batch_size=64)# 搭建自己的神经网络
class Lgl(torch.nn.Module):def __init__(self):super(Lgl, self).__init__()self.sigmoid1 = torch.nn.Sigmoid()def forward(self, input):output = self.sigmoid1(input)return output# 实例化
l = Lgl()# 进行sigmoid函数化,并在TensorBoard中显示
writer = SummaryWriter("logs_test")
step = 0
for data in dataloader:imgs, target = data# 未进行sigmoid函数前图片显示writer.add_images("input",imgs,step)output = l(imgs)# 进行sigmoid函数化后图片显示writer.add_images("output",output,step)step = step + 1writer.close()
对比如下图所示:


相关文章:
Pytorch深度学习-----神经网络之非线性激活的使用(ReLu、Sigmoid)
系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Co…...
Gis入门,使用起止点和两个控制点生成三阶贝塞尔曲线(共四个控制点,线段转曲线)
前言 本章讲解如何在gis地图中使用起止点和两个控制点(总共四个控制点)生成三阶贝塞尔曲线。 二阶贝塞尔曲线请参考上一章《Gis入门,如何根据起止点和一个控制点计算二阶贝塞尔曲线(共三个控制点)》 贝塞尔曲线(Bezier curve)介绍 贝塞尔曲线(Bezier curve)是一种…...
Web-7-深入理解Cookie与Session:实现用户跟踪和数据存储
深入理解Cookie与Session:实现用户跟踪和数据存储 今日目标 1.掌握客户端会话跟踪技术Cookie 2.掌握服务端会话跟踪技术Sesssion 1.会话跟踪技术介绍 会话:用户打开浏览器,访问web服务器的资源,会话建立,直到有一方断…...
Springboot设置Https
1、修改配置文件application.yml,并将*.jks放到resource目录下。 server:port: 8080ssl:key-store: classpath:*.jkskey-store-password: *key-store-type: JKSenabled: truekey-alias: boe.com.cn2、添加http转https的配置 Configuration public class TomcatCon…...
Windows 使用 Linux 子系统,轻轻松松安装多个linux
Windows Subsystem for Linux WSL 简称WSL,是一个在Windows 10\11上能够运行原生Linux二进制可执行文件(ELF格式)的兼容层。它是由微软与Canonical公司合作开发,其目标是使纯正的Ubuntu、Debian等映像能下载和解压到用户的本地计算机&#…...
中级课程——弱口令(认证崩溃)
文章目录 什么是弱口令密码生成器分类暴力破解万能密码测试环境工具 什么是弱口令 密码生成器 分类 暴力破解 万能密码 or true --测试环境 工具 九头蛇,超级弱口令爆破工具,bp,...
web自动化测试进阶篇05 ——— 界面交互场景测试
😏作者简介:博主是一位测试管理者,同时也是一名对外企业兼职讲师。 📡主页地址:【Austin_zhai】 🙆目的与景愿:旨在于能帮助更多的测试行业人员提升软硬技能,分享行业相关最新信息。…...
NICE-SLAM: Neural Implicit Scalable Encoding for SLAM论文阅读
论文信息 标题:NICE-SLAM: Neural Implicit Scalable Encoding for SLAM 作者:Zihan Zhu, Songyou Peng,Viktor Larsson — Zhejiang University 来源:CVPR 代码:https://pengsongyou.github.io/nice-slam…...
cmake 配置Visual studio的调试命令
配置代码如截图: set_property(TARGET ${TARGET_NAME} PROPERTY VS_DEBUGGER_COMMAND "./consoleTest.exe") set_property(TARGET ${TARGET_NAME} PROPERTY VS_DEBUGGER_COMMAND_ARGUMENTS "./config/labelDriver.cfg") set_propert…...
MPDIoU: A Loss for Efficient and Accurate Bounding BoxRegression--论文学习笔记
超越GIoU/DIoU/CIoU/EIoU MPDIoU让YOLOv7和YOLACT双双涨点 目标检测上的指标对比: 论文地址: [2307.07662] MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression (arxiv.org) 摘要 边界框回归(Bounding Box Regression&am…...
【Uniapp 的APP热更新】
Uniapp 的APP热更新功能依赖于其打包工具 HBuilder,具体步骤如下: 1. 在 HBuilder 中构建并打包出应用程序 具体步骤: 1.点击发行,点击制作wgt包 2.根据需求修改文件储存路径和其他配置,点击确定 3.等待打包完成&a…...
MySQL主从复制配置
Mysql的主从复制至少是需要两个Mysql的服务,当然Mysql的服务是可以分布在不同的服务器上,也可以在一台服务器上启动多个服务。 (1)首先确保主从服务器上的Mysql版本相同 (2)在主服务器上,创建一个充许从数据库来访问的用户slave,密码为:123456 ,然后使用REPLICATION SLAV…...
Linux - 添加普通用户为信任用户
1.添加用户 在Linux系统中,可以使用以下步骤添加用户: 打开终端并以root用户身份登录 输入以下命令以创建新用户(请将username替换为您想要创建的用户名): adduser username 设置该用户的密码,使用以下命…...
flask----路由系统
# 1 flask路由系统是基于装饰器的:参数如下 # 2 转换器: # 3 路由系统本质 # 4 endpoint 不传会怎么样,不传会以视图函数的名字作为值,但是如果加了装饰器,所有视图函数名字都是inner,就会出错,使用wrapp…...
驶向专业:嵌入式开发在自动驾驶中的学习之道
导语: 自动驾驶技术在汽车行业中的快速发展为嵌入式开发领域带来了巨大的机遇。作为自动驾驶的核心组成部分,嵌入式开发在驱动汽车的智能化和自主性方面发挥着至关重要的作用。本文将探讨嵌入式开发的学习方向、途径以及未来在自动驾驶领域中的展望。 一、学习方向:…...
Go语言入门:从零开始的快速指南(一)
文章目录 引言Go语言的诞生背景Go 语言的特性安装Go语言环境集成开发环境安装第一个Go程序Go 源代码的特征解读 引言 Go语言(也称为Golang)是一种开源的、静态类型的编程语言,由Google开发。它的设计目标是简单、高效、安全、并且易于学习和…...
Windows7+内网, 安装高版本nodejs,使用vite+vue3+typescript开发项目
前言:vite只支持高版本的nodejs,而高版本的nodejs只支持windows8及以上,且vite还对浏览器版本有兼容问题。以下均为vite官网截图 1、安装好低版本的nodejs win7系统建议安装13.及以下,我的是12.12.0这个版本。nodejs低版本官网下载…...
【C语言day14】
#include<stdio.h>int fun(char* s) {char* t s;while (*t);return(t - s); }int main() {char s[] "abc";int n fun(s);printf("%d\n", n);//4return 0; }循环在*t为0时停止,同时t,t最后会停在字符串结束的’\0’之后的一…...
暑假刷题第19天--8/1
170. 加成序列 - AcWing题库(dfs迭代加深--重点理解) #include<iostream> using namespace std; int n; int a[11]; int dfs(int x,int h){if(x>h1)return 0;if(a[x-1]n)return 1;bool st[130]{};for(int i1;i<x-1;i){for(int j1;j<i;j)…...
Java开发中的------修改密码+忘记密码
目录 1.修改密码 客户端响应 前端vue 后端 controller层 ServiceImpl实现层 2.忘记密码 客户端响应 后端 controller层 serviceImpl实现层 本章需要准备:springcloud项目,依赖,数据库.... 数据库SQL SET FOREIGN_KEY_CHECKS0;-- -…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...
