机器学习实战13-超导体材料的临界温度预测与分析(决策树回归,梯度提升回归,随机森林回归和Bagging回归)
大家好,我是微学AI,今天给大家介绍一下机器学习实战13-超导体材料的临界温度预测与分析(决策树回归,梯度提升回归,随机森林回归和Bagging回归),这几天引爆网络的科技大新闻就是韩国科研团队宣称发现了室温超导材料-LK-99,这种材料在常压情况下,127摄氏度就可以达到超导临界点,他们还在推特上建立的账号,发布了相关视频。
上个世纪到现在科学家都在实验寻找超导材料,如果实现室温超导,那将是科学家们梦寐以求的追求,可以毫不夸张的说是“第四次工业革命”,人类的整个工业体系将被重塑。
目录
室温超导介绍
超导体材料的临界温度
超导体的临界温度的预测
超导体实验数据
超导体数据分析
临界温度预测与代码
总结
室温超导介绍
室温超导是指在常规的环境条件下,材料能够表现出超导电性,材料的电阻为0。在传统超导材料中,需要将材料冷却到极低的温度(通常接近绝对零度)才能实现超导。但室温超导的概念是指找到一种材料或结构,使之在室温下仍然能够以零电阻的方式传导电流。
要实现室温超导,研究人员面临着许多挑战。首先,他们需要寻找具有适当电子结构和相互作用的材料,以便在室温下形成库珀电子对。其次,他们需要克服材料在常温下的热震荡和散射问题,以确保电子对能够在材料中长距离传输而不被干扰或损失。
本次韩国论文表明,韩国科学家发现的“改性铅磷灰石晶体结构”,成分为 P b ( 10 − x ) C u x ( P O 4 ) 6 O Pb(10-x)Cux(PO_4)_{6}O Pb(10−x)Cux(PO4)6O合成超导材料,一共分为三步:
第一步,按照配比合成黄铅矿 P b ( S O 4 ) O Pb(SO_{4})O Pb(SO4)O;
第二步,合成磷化亚铜晶体 C u 3 P Cu_{3}P Cu3P;
第三步,生成常温常压超导体 P b ( 10 − x ) C u x ( P O 4 ) 6 O Pb(10-x)Cux(PO_4)_{6}O Pb(10−x)Cux(PO4)6O;
现在多个国家与实验室正在复现这个成果,不过这种材料是否具有超导性还有待观察,只能说这是一次在寻找超导材料的历程中更迈进了一步,科研之路还是很漫长的,大家还是抱着理性的心态看待这件事。
下面针对超导的临界温度进行预测分析,让大家更加熟悉超导材料为什么寻找如此困难。
超导体材料的临界温度
超导体的临界温度(Critical Temperature,Tc)是指材料在该温度以下开始表现出超导性质。超导体在低温下具有特殊的电子行为,包括零电阻和磁场排斥效应(Meissner 效应)。临界温度是判断一个材料是否能够实现超导的重要参数。
传统的超导体通常具有较低的临界温度,需要将其冷却至接近绝对零度(-273.15摄氏度或0开尔文)才能实现超导。例如,铅的临界温度约为7.2开尔文(-265.95摄氏度),铜氧化物高温超导体的临界温度可达到几十开尔文。
高温超导体是指临界温度较传统超导体更高的材料。1986年,发现了第一种具有相对较高临界温度(超过液氮沸点77开尔文)的铜氧化物超导体,这一发现引起了科学界的轰动。随后,研究人员发现了许多其他高温超导体,且临界温度进一步提高。目前,已经发现的最高临界温度约为138开尔文(-135摄氏度)。
提高超导体的临界温度是超导研究的一个重要目标。因为高温超导体相对于传统超导体,它们不需要极端低温条件就能够实现超导。这意味着更容易实现制冷和工程应用,使得超导技术更具实用性。
超导体的临界温度的预测
超导体的临界温度的预测与分析是超导研究领域的重要课题之一,其具有重要的理论和实际意义。关于超导体的研究历程:
1.简介和历史:超导现象最早在1911年被荷兰物理学家海克·卡末林·奥尼斯发现,他观察到汞在低温下电阻突然消失。经过多年的研究,科学家们发现了多种超导体,包括低温超导体和高温超导体。
2.BCS理论:低温超导体的超导机制可由BCS理论解释,该理论由约翰·巴丁, 勒尔莫·库珀和罗伯特·肖利提出。BCS理论认为,超导性是由电子-声子相互作用引起的。该理论成功预测了多种低温超导体的临界温度。
3.高温超导体:1986年,瑞士IBM实验室的J.G. Bednorz和K.A. Müller发现了第一个高温超导体(铜氧化物)。高温超导体的临界温度较低温超导体更高,但其超导机制至今仍不完全清楚。
4.材料设计:预测和提高超导体的临界温度是超导研究的重要目标之一。科学家们通过理论计算、实验和模拟等方法,探索不同材料的超导性能。其中一种方法是通过调整晶格结构、化学成分以及引入掺杂物,来寻找具有更高临界温度的超导体。
5.硬件应用:超导体的临界温度直接关系到其在实际应用中的可行性。高临界温度超导体能在较高温度下实现超导,降低制冷成本,因此被广泛应用于磁共振成像(MRI)、磁悬浮列车、电力输电和电能储存等领域。
超导体实验数据
这里整理了关于超导体实验数据,数据下载地址:
链接:https://pan.baidu.com/s/1vhu3rZ1ruBOWddfiOFV6XQ?pwd=yl26
提取码:yl26
该数据的字段比较多,我详细介绍一下每个字段的含义:
number_of_elements: 包含的元素数量
mean_atomic_mass: 平均原子质量
wtd_mean_atomic_mass: 权重平均原子质量
gmean_atomic_mass: 几何平均原子质量
wtd_gmean_atomic_mass: 权重几何平均原子质量
entropy_atomic_mass: 原子质量的熵
wtd_entropy_atomic_mass: 权重的原子质量熵
range_atomic_mass: 原子质量的范围
wtd_range_atomic_mass: 权重的原子质量范围
std_atomic_mass: 原子质量的标准差
wtd_std_atomic_mass: 权重的原子质量标准差
mean_fie: 平均电离能
wtd_mean_fie: 权重平均电离能
gmean_fie: 几何平均电离能
wtd_gmean_fie: 权重几何平均电离能
entropy_fie: 电离能的熵
wtd_entropy_fie: 权重的电离能熵
range_fie: 电离能的范围
wtd_range_fie: 权重的电离能范围
std_fie: 电离能的标准差
wtd_std_fie: 权重的电离能标准差
mean_atomic_radius: 平均原子半径
wtd_mean_atomic_radius: 权重平均原子半径
gmean_atomic_radius: 几何平均原子半径
wtd_gmean_atomic_radius: 权重几何平均原子半径
entropy_atomic_radius: 原子半径的熵
wtd_entropy_atomic_radius: 权重的原子半径熵
range_atomic_radius: 原子半径的范围
wtd_range_atomic_radius: 权重的原子半径范围
std_atomic_radius: 原子半径的标准差
wtd_std_atomic_radius: 权重的原子半径标准差
mean_Density: 平均密度
wtd_mean_Density: 权重平均密度
gmean_Density: 几何平均密度
wtd_gmean_Density: 权重几何平均密度
entropy_Density: 密度的熵
wtd_entropy_Density: 权重的密度熵
range_Density: 密度的范围
wtd_range_Density: 权重的密度范围
std_Density: 密度的标准差
wtd_std_Density: 权重的密度标准差
mean_ElectronAffinity: 平均电子亲和能
wtd_mean_ElectronAffinity: 权重平均电子亲和能
gmean_ElectronAffinity: 几何平均电子亲和能
wtd_gmean_ElectronAffinity: 权重几何平均电子亲和能
entropy_ElectronAffinity: 电子亲和能的熵
wtd_entropy_ElectronAffinity: 权重的电子亲和能熵
range_ElectronAffinity: 电子亲和能的范围
wtd_range_ElectronAffinity: 权重的电子亲和能范围
std_ElectronAffinity: 电子亲和能的标准差
wtd_std_ElectronAffinity: 权重的电子亲和能标准差
mean_FusionHeat: 平均熔化热
wtd_mean_FusionHeat: 权重平均熔化热
gmean_FusionHeat: 几何平均熔化热
wtd_gmean_FusionHeat: 权重几何平均熔化热
entropy_FusionHeat: 熔化热的熵
wtd_entropy_FusionHeat: 权重的熔化热熵
range_FusionHeat: 熔化热的范围
wtd_range_FusionHeat: 权重的熔化热范围
std_FusionHeat: 熔化热的标准差
wtd_std_FusionHeat: 权重的熔化热标准差
mean_ThermalConductivity: 平均热导率
wtd_mean_ThermalConductivity: 权重平均热导率
gmean_ThermalConductivity: 几何平均热导率
wtd_gmean_ThermalConductivity: 权重几何平均热导率
entropy_ThermalConductivity: 热导率的熵
wtd_entropy_ThermalConductivity: 权重的热导率熵
range_ThermalConductivity: 热导率的范围
wtd_range_ThermalConductivity: 权重的热导率范围
std_ThermalConductivity: 热导率的标准差
wtd_std_ThermalConductivity: 权重的热导率标准差
mean_Valence: 平均价电子数
wtd_mean_Valence: 权重平均价电子数
gmean_Valence: 几何平均价电子数
wtd_gmean_Valence: 权重几何平均价电子数
entropy_Valence: 价电子数的熵
wtd_entropy_Valence: 权重的价电子数熵
range_Valence: 价电子数的范围
wtd_range_Valence: 权重的价电子数范围
std_Valence: 价电子数的标准差
wtd_std_Valence: 权重的价电子数标准差
critical_temp: 临界温度
超导体数据分析
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
import tensorflow as tf
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error as mse
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor, BaggingRegressor# 加载数据
dataFrame = pd.read_csv('train.csv')featuresNeeded = dataFrame.columns[:-1]features = np.array(dataFrame[featuresNeeded])
targets = np.array(dataFrame['critical_temp'])# 对特征向量进行标准化,以便进行PCA和进一步处理
stdc = StandardScaler()
features = stdc.fit_transform(features)pca = PCA(n_components=2)
pca.fit(features)
dimReducedFrame = pca.transform(features)# 转换为DataFrame并绘图
dimReducedFrame = pd.DataFrame(dimReducedFrame)
dimReducedFrame = dimReducedFrame.rename(columns={0: 'V1', 1: 'V2'})
dimReducedFrame['critical_temp'] = targetsplt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
# 绘制散点图
plt.figure(figsize=(10, 7))
sb.scatterplot(data=dimReducedFrame, x='V1', y='V2', hue='critical_temp')
plt.grid(True)
plt.show()# 绘制第一主成分与Tc之间的关系图
plt.figure(figsize=(15, 5))
plt.subplot(1, 2, 1)
sb.regplot(data=dimReducedFrame, x='V1', y='critical_temp', color='blue')
plt.title('Tc与第一主成分的关系')# 绘制第二主成分与Tc之间的关系图
plt.subplot(1, 2, 2)
sb.regplot(data=dimReducedFrame, x='V2', y='critical_temp', color='blue')
plt.title('Tc与第二主成分的关系')
plt.show()
临界温度预测与代码
下面我将对给定数据集中的温度数据进行探索和分析,并使用线性回归、决策树回归、梯度提升回归、随机森林回归和Bagging回归等模型进行预测和性能评估。
# 对目标值进行归一化
maxTc = max(targets)
targets = targets / 1# 将数据拆分为训练集和测试集
xTrain, xTest, yTrain, yTest = train_test_split(features, targets, test_size=0.2, random_state=42)# 定义用于评估模型性能的函数
def PerformanceCalculator(trueVals, predVals, name):plt.plot([0, 0.001, 0.01, 1], [0, 0.001, 0.01, 1], color='blue')plt.scatter(trueVals, predVals, color='red')er = mse(trueVals, predVals)er = pow(er, 0.5)er = int(er * 10000) / 10000plt.title('RMSE: ' + str(er) + ' for ' + name)plt.show()# 使用线性回归进行分析
lr = LinearRegression()
lr.fit(xTrain, yTrain)predictions = lr.predict(xTest)
PerformanceCalculator(yTest, predictions, '线性回归')# 使用决策树进行分析
lr = DecisionTreeRegressor()
lr.fit(xTrain, yTrain)predictions = lr.predict(xTest)
PerformanceCalculator(yTest, predictions, '决策树回归')# 使用梯度提升回归进行分析
lr = GradientBoostingRegressor()
lr.fit(xTrain, yTrain)predictions = lr.predict(xTest)
PerformanceCalculator(yTest, predictions, '梯度提升回归')# 使用随机森林进行分析
lr1 = RandomForestRegressor()
lr1.fit(xTrain, yTrain)predictions = lr1.predict(xTest)
PerformanceCalculator(yTest, predictions, '随机森林回归')# 使用Bagging回归进行分析
lr = BaggingRegressor()
lr.fit(xTrain, yTrain)predictions = lr.predict(xTest)
PerformanceCalculator(yTest, predictions, 'Bagging回归')
## 使用集成方法进行预测
pred1 = lr1.predict(xTest)
pred2 = lr.predict(xTest)
predictions = (pred1 + pred2)/ 2# 评估集成模型性能
PerformanceCalculator(yTest, predictions, '(随机森林 + Bagging)')
# 绘制真实值与预测值的关系图
ylab = yTest
predVals = lr1.predict(xTest)plt.plot([0, 0.001, 0.01, 1], [0, 0.001, 0.01, 1], color='blue')
plt.scatter(ylab, predVals, color='green')
er = mse(ylab, predVals)
er = pow(er, 0.5)
er = int(er * 10000) / 10000
plt.title('真实值与预测值的关系图 (RMSE: ' + str(er) + ')')
plt.show()
总结
超导体临界温度的预测与分析是超导研究的重要方向。通过理论、实验和模拟等手段,科学家们致力于寻找新的超导材料和优化现有材料,以提高超导体的临界温度,推动超导技术在各个领域的应用。
如果未来室温超导体能够发现与应用,那在多个领域都能起到翻天覆地的变化。未来超导体的应用:
磁共振成像(MRI):超导磁体在MRI设备中作为强大的磁场源,用于获取人体内部的高清影像,用于医学诊断。
加速器和粒子物理实验:超导磁体广泛应用于加速器、环形对撞机等粒子物理实验中,用于产生强大的磁场以加速和操控高能粒子束。
磁悬浮列车:超导磁体可以产生强大的磁力,用于磁悬浮列车的悬浮和推进,使列车无接触地高速运行,具有较低的摩擦和能耗。
能源传输和储存:超导体可用于电力输电线路,通过降低电阻减少能量损失;同时,超导体还可以应用于超导蓄能器等能量存储装置,用于平衡电网能量波动。
可控核聚变:可控核聚变是一种将轻元素核融合并释放出巨大能量的过程,被视为清洁、可持续的能源解决方案之一。
相关文章:

机器学习实战13-超导体材料的临界温度预测与分析(决策树回归,梯度提升回归,随机森林回归和Bagging回归)
大家好,我是微学AI,今天给大家介绍一下机器学习实战13-超导体材料的临界温度预测与分析(决策树回归,梯度提升回归,随机森林回归和Bagging回归),这几天引爆网络的科技大新闻就是韩国科研团队宣称发现了室温超导材料-LK-99,这种材料…...

小研究 - 一种复杂微服务系统异常行为分析与定位算法(二)
针对极端学生化偏差(Extreme Studentized &#…...

Docker 安装 MySQL5.6
方法一、docker pull mysql 查找Docker Hub上的mysql镜像 #docker search mysql 这里我们拉取官方的镜像,标签为5.6 #docker pull mysql:5.6 (第一次启动Docker-MySql主要是查看Docker里面MySQL的默认配置,数据位置,日志位置,配…...
vue组件跳层级时的事件处理 (事件的广播与派发)
相信大家一定用过elementui这个组件库,那么对里面的表单组件一定不陌生。 最常用的几个组件就是el-form,el-form-item,el-input,表单校验时的错误提示功能是交给el-form-item来实现的。当el-input填写时触发校验规则,…...

毫米波雷达 TI IWR6843 官方测试程序(Out Of Box Demo)
1.硬件准备 1.IWR6843AOP板子 2.两个USB转串口模块(因为我的是自己做的板子,板子上没有集成USB转串口芯片) 2.软件准备 1.最新版本的CCS,注意后缀没有THEIA https://www.ti.com/tool/CCSTUDIO?DCMPdsp_ccs_v4&HQSccs 2.最…...

中大标了 5813万
汗水浇灌收获,实干笃定前行。刚刚进入八月,鸿雁政企事业部就传来了特大喜讯——鸿雁中标浙江丽水国际会展中心电线电缆项目,中标总金额达5813万!一举刷新鸿雁单体项目中最高中标金额。 据了解,浙江丽水国际会展中心项…...

Java电子招投标采购系统源码-适合于招标代理、政府采购、企业采购、等业务的企业 tbms
功能描述 1、门户管理:所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含:招标公告、非招标公告、系统通知、政策法规。 2、立项管理:企业用户可对需要采购的项目进行立项申请,并提交审批,查…...

RocketMQ安装和简单使用
说明:RocketMQ与RabbitMQ一样,是分布式架构中的一个组件,用来解决微服务之间的异步调用。同类的还有两个,各自的特点如下: Rocket结构 服务启动时 发送消息时 其中各个部分的功能如下: (1&…...

Codeforces Round 869 (Div. 2)
C 求最长似递增子序列 是子序列! 我误以为是最长上升子序列的变式,但是这个题目和那个题目,并不是很一样 我们选择观察样例: 1 2 4 3 3 5 6 2 1 其实样例当中就给我们了答案,我们能感觉的出来,应该是用长…...

【雕爷学编程】MicroPython动手做(28)——物联网之Yeelight 3
知识点:什么是掌控板? 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片,支持WiFi和蓝牙双模通信,可作为物联网节点,实现物联网应用。同时掌控板上集成了OLED…...

CTFSHOW php 特性
web89 数组绕过正则 include("flag.php"); highlight_file(__FILE__);if(isset($_GET[num])){$num $_GET[num]; get numif(preg_match("/[0-9]/", $num)){ 是数字 就输出 nodie("no no no!");}if(intval($num)){ 如果是存在整数 输出 flagecho …...
2、认识O(nlogn)的排序
归并排序 分两半,谁小拷贝谁 public class Test{public static void mergeSort(int[] arr) {if (arr == null || arr.length < 2) {return;}mergeSort(arr, 0, arr.length - 1);}public static void mergeSort(int[] arr, int l, int r) {if (l == r) {return;}int mid =…...

什么是 HTTP 长轮询?
什么是 HTTP 长轮询? Web 应用程序最初是围绕客户端/服务器模型开发的,其中 Web 客户端始终是事务的发起者,向服务器请求数据。因此,没有任何机制可以让服务器在没有客户端先发出请求的情况下独立地向客户端发送或推送数据。 为…...
操作系统用户态和核心态和CPU上下文切换
目录 操作系统用户态和核心态用户态和核心态操作系统用户态和核心态是如何交换的系统调用 CPU上下文什么是CPU上下文和CPU上下文切换CPU为什么要进行上下文切换 操作系统用户态和核心态 用户态和核心态 操作系统两种状态:用户态和内核态。 操作系统的用户态和内核态…...

TSINGSEE青犀视频汇聚平台EasyCVR视频广场面包屑侧边栏支持拖拽操作
TSINGSEE青犀视频汇聚平台EasyCVR可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有GB28181、RTSP/Onvif、RTMP等,以及厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等,能对外分发RTSP、RTMP、FLV、HLS、Web…...

RocketMQ发送消息超时异常
说明:在使用RocketMQ发送消息时,出现下面这个异常(org.springframework.messging.MessgingException:sendDefaultImpl call timeout……); 解决:修改RocketMQ中broke.conf配置,添加下…...
WordPress做权重站:二级目录伪静态写法
我喜欢用WordPress建站,但是每个网站我都会写3个以上的二级目录,为什么了,因为WordPress数据量过大会导致数据库很大很卡,所以这种做法可以减轻数据库的负荷。我一般每个目录的文章达到15万篇就不会再更新了,3个目录加…...

浅谈下API初步认知
当我们谈论API,我们指的是应用程序接口(Application Programming Interface)。API允许不同的软件应用程序之间互相通信和交互。它定义了一组规定和协议,用于确定数据传输和请求的格式、方法和功能。 API的作用是在软件开发中提供一…...

LeetCode--剑指Offer75(2)
目录 题目描述:剑指 Offer 58 - II. 左旋转字符串(简单)题目接口解题思路1代码解题思路2代码 PS: 题目描述:剑指 Offer 58 - II. 左旋转字符串(简单) 字符串的左旋转操作是把字符串前面的若干个字符转移到…...
基于vue-cli3的vue项目 通过postcss-pxtorem 实现px自动转换成rem并解决版本问题
1、npm安装依赖 npm install lib-flexible --save npm install postcss-pxtorem --save-dev 2、引入lib-flexible 在项目入口文件main.js 中引入lib-flexible import "lib-flexible/flexible.js"; 3、 配置postcss-pxtorem vue-cli3 项目postcss-pxtorem的…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...

Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...

无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...