当前位置: 首页 > news >正文

Squeeze-and-Excitation Networks阅读笔记一

文章目录

    • Abstract
    • 1 INTRODUCTION

Abstract

卷积算子(convolution operator)是卷积神经网络(cnn)的核心组成部分,它使网络能够通过融合每层局部接受域内的空间和通道信息来构建信息特征。广泛的先前研究已经调查了这种关系的空间组成部分,寻求通过增强整个特征层次的空间编码质量(enhancing the quality of spatial encodings throughout its feature hierarchy)来加强CNN的表示能力。在这项工作中,我们将重点放在通道关系(channel relationship)上,并提出了一种新的架构单元,我们称之为 “Squeeze-and-Excitation”(SE)块,该单元通过明确建模通道之间的相互依赖性,自适应地重新校准通道特征响应。这些块可以堆叠在一起,形成SENet架构,可在不同的数据集上极其有效地泛化。我们进一步证明,SE块在略微增加计算成本的情况下,为现有最先进的cnn带来了显著的性能改进。Squeeze-and-Excitation Networks 构成了我们2017年ILSVRC分类提交的基础,该分类提交获得了第一名,并将前5名的误差降低到2.251%,比2016年的获奖作品相对提高了25%。模型和代码可在 https://github.com/hujie-frank/SENet 上获得。



1 INTRODUCTION

在本文中,我们研究了网络设计的另一个方面——通道之间的关系。我们引入了一个新的架构单元,我们称之为挤压和激励(SE)块,其目标是通过显式地模拟其卷积特征通道之间的相互依赖性(by explicitly modelling the interdependencies between the channels of its convolutional features)来提高网络产生的表示的质量。为此,本文提出了一种机制,允许网络进行特征重校准(feature recalibration),通过这种机制,网络可以学习使用全局信息来有选择性地强调有信息量的特征,并抑制不太有用的特征。


SE 构建块的结构如图1所示。对于任意给定的将输入 X \mathbf{X} X 映射到 U \mathbf{U} U ,其中 U ∈ R H × W × C \mathbf{U} \in \mathbb{R}^{H \times W \times C} URH×W×C 的特征映射的变换 F t r \mathbf{F}_{tr} Ftr,例如卷积,我们可以构造一个相应的 SE 块来执行特征重新校准(feature recalibration)。特征 U \mathbf{U} U 首先通过 squeeze 操作进行传递,该操作通过跨其空间维度( H × W H × W H×W)聚合特征图来产生通道描述符(channel descriptor)。这个描述子的功能是产生一个通道级特征响应的全局分布的嵌入(embedding),允许来自网络的全局感受野的信息被其所有层使用。聚合之后是一个 excitation 操作,该操作采取简单的自门控(self-gating mechanism)机制的形式,将嵌入作为输入,并产生每个通道调制权重(per-channel modulation weights)的集合。这些权重被应用于特征映射 U \mathbf{U} U 以生成SE块的输出,随后可以直接馈送到网络的后续层。




通过简单地堆叠SE块的集合,可以构建一个SE网络(SENet)。此外,这些SE块还可以在网络架构的一定深度范围内作为原始块的 drop-in replacement 。虽然构建模块的模板是通用的,但它在不同深度上所扮演的角色在整个网络中是不同的。在较早的层中,它以一种与类别无关的方式激发信息特征,加强共享的低级表示(strengthening the shared low-level representations)。在后面的层中,SE块变得越来越专门化,并以高度类特定的方式响应不同的输入(第7.2节)。因此,SE块执行的特征重新校准的好处可以通过网络积累。

在网络的较早层,模型通常专注于学习并提取更为通用和基础的特征,如边缘、颜色和纹理等。这些特征是多个类别共享的,不具有很强的类别特异性。在这一阶段,SE模块以一种类别无关的方式工作,激发有信息的特征,增强这些共享的低级表示。


然而,在网络的较深层,模型开始专注于学习更具类别特异性的特征,如特定物体的部分或者更复杂的形状。这是因为对于更深层的模型来说,它需要从更为抽象和高级的角度理解输入数据,以便进行准确的分类或预测。在这一阶段,SE模块开始变得更为专门化,响应不同类别的输入,使网络有能力捕捉并处理类别特定的信息。


在这里插入图片描述


个人的简要理解以及概括就是,虽然就是卷积层中的参数是可以学习的,但是不同卷积核得到的结果重要性肯定是不一样的,所以可以通过加入通道注意力机制来提高性能。

相关文章:

Squeeze-and-Excitation Networks阅读笔记一

文章目录 Abstract1 INTRODUCTION Abstract 卷积算子(convolution operator)是卷积神经网络(cnn)的核心组成部分,它使网络能够通过融合每层局部接受域内的空间和通道信息来构建信息特征。广泛的先前研究已经调查了这种…...

LabVIEW开发3D颈动脉图像边缘检测

LabVIEW开发3D颈动脉图像边缘检测 近年来,超声图像在医学领域对疾病诊断具有重要意义。边缘检测是图像处理技术的重要组成部分。边缘包含图像信息。边缘检测的主要目的是根据强度和纹理等属性识别图像中均匀区域的边界。超声(US)图像存在视觉…...

python10.4.3

10.4.3重构 错误实例 import jsondef laoyonghu(): #获取老用户名字filenameusername.jsonwith open(filename) as f:usernamejson.load(f)return usernamedef xinyonghu(): #获取新用户名字filenameusername.jsonusernameinput("whats your name:")with ope…...

系统架构设计高级技能 · 软件架构概念、架构风格、ABSD、架构复用、DSSA(一)【系统架构设计师】

系列文章目录 系统架构设计高级技能 软件架构概念、架构风格、ABSD、架构复用、DSSA(一)【系统架构设计师】 系统架构设计高级技能 系统质量属性与架构评估(二)【系统架构设计师】 系统架构设计高级技能 软件可靠性分析与设计…...

Vue中,$forceUpdate()的使用

在Vue官方文档中指出,$forceUpdate具有强制刷新的作用。 那在vue框架中,如果data中有一个变量:age,修改他,页面会自动更新。 但如果data中的变量为数组或对象,我们直接去给某个对象或数组添加属性,页面是识…...

K8s中的Ingress

1.把端口号对外暴露,通过ip端口号进行访问 使用Service里面的NodePort实现 2.NodePort缺陷 在每个节点上都会起到端口,在访问时候通过任何节点,通过节点ip暴露端口号实现访问 意味着每个端口只能使用一次,一个端口对应一个应用…...

c++调用ffmpeg api录屏 并进行udp组播推流

代码及工程见https://download.csdn.net/download/daqinzl/88155241 开发工具&#xff1a;visual studio 2019 播放&#xff0c;采用ffmpeg工具集里的ffplay.exe, 执行命令 ffplay udp://224.1.1.1:5001 主要代码如下: #include "pch.h" #include <iostream>…...

war包方式安装linux和windows的geoserver

注意&#xff1a; 从Java 9开始&#xff0c;Oracle已经不再单独提供JRE&#xff08;Java Runtime Environment&#xff09;了&#xff0c;而是直接将JRE集成在JDK&#xff08;Java Development Kit&#xff09;中。这是因为JRE包含了运行Java程序所需的环境&#xff0c;而JDK除…...

安装CUDA与CUDNN与Pytorch(最新超级详细图文版本2023年8月最新)

一、安装CUDA 1.1、下载安装包 cuda可以认为就是Nvidia为了显卡炼丹搞的一个软件&#xff0c;其下载地址为&#xff1a;CUDA Toolkit 12.2 Update 1 Downloads | NVIDIA Developer 当你点进这个链接的时候&#xff0c;你需要依次选择 1是选择系统&#xff0c;这里选windows…...

内存快照:宕机后,Redis如何实现快速恢复?RDB

AOF的回顾 回顾Redis 的AOF的持久化机制。 Redis 避免数据丢失的 AOF 方法。这个方法的好处&#xff0c;是每次执行只需要记录操作命令&#xff0c;需要持久化的数据量不大。一般而言&#xff0c;只要你采用的不是 always 的持久化策略&#xff0c;就不会对性能造成太大影响。 …...

Linux之 Ubuntu 安装常见服务 (二) Tomcat

安装TomCat 服务 1、安装JDK环境 https://www.oracle.com/java/technologies/downloads/ 下载的官网 wget https://download.oracle.com/java/20/latest/jdk-20_linux-x64_bin.deb (sha256) 使用dpkg进行软件安装时&#xff0c;提示&#xff1a;dpkg&#xff1a;处理软件包XX…...

docker 配置 Mysql主从集群

Docker version 20.10.17, build 100c701 MySQL Image version: 8.0.32 Docker container mysql-master is source. mys ql-replica is replication. master source. replica slave.名称叫法不一样而已。 Choose one of the way&#xff0c;与replica同步数据两种情况&…...

Layui实现OA会议系统之会议管理模块总合

目录 一、项目背景 二、项目概述 1. 概述 2. 环境搭建 3. 工具类引用 4. 功能设计 4.1 会议发布 4.2 我的会议 4.3 会议审批 4.4 会议通知 4.5 待开会议 4.6 历史会议 4.7 所有会议 5. 性能优点 5.1 兼容性好 5.2 可维护性和可扩展性 5.3 轻量灵活 5.4 模块化设计…...

fishing之踩坑篇捕获数据不齐全

文章目录 一、问题记录二、解决方法三、更新钓鱼模板四、进行点击邮件五、查看仪表盘免责声明 一、问题记录 通过点击邮件内的链接&#xff0c;提交数据&#xff0c;但是只记录密码&#xff0c;无法记录username 二、解决方法 对于需要被捕获的表单数据&#xff0c;除了inp…...

ppt使用笔记

文章目录 如何让文档好看纯文字绝对不可行多用流程图和效果图切换动画母版音乐视频 作品渐变星空放大镜随机抽奖 其他快捷键 作为一个开发&#xff0c;对这种表现类型的软件一直不太上心&#xff0c;但有些场景要用到ppt&#xff0c;例如述职和项目案例分享。 很直观的体验就是…...

java中的hashmap和concurrenthashmap解析

hashmap的初始化数组大小为16&#xff0c;如果发生哈希冲突的时候在当前的索引后面采用头插法以链表的形式继续插入节点。 concurrenthashmap的结构图如下所示&#xff1a; 本身不是16个节点吗&#xff1f;这里分为两个长度为4的数组&#xff0c;变成了4*4总共16个节点&#x…...

元素2D转3D 椭圆形旋转实现

椭圆旋转功能展示 transform-style: preserve-3d;&#xff08;主要css代码&#xff09; gif示例&#xff08;背景图可插入透明以此实现边框线的旋转&#xff09; 导致的无法点击遮挡问题可以参考我的另一个文章 穿透属性-----------------------css穿透属性 实时代码展示...

Centos7.9 制作openssh9.2p2 rpm升级包和升级实战

一、背景说明 Centos7.9 默认安装的openssh 版本为7.4p1&#xff0c;经绿盟扫描&#xff0c;存在高危漏洞&#xff0c;需要升级到最新。 官网只提供编译安装包&#xff0c;为了方便升级&#xff0c;先通过编译安装包&#xff0c;制作rpm包&#xff0c;并进行升级 如下为做好…...

JavaScript学习(3)

Web API 是开发人员的梦想。 它可以扩展浏览器的功能它可以极大简化复杂的功能它可以为复杂的代码提供简单的语法 什么是 Web API&#xff1f; API 指的是应用程序编程接口&#xff08;Application Programming Interface&#xff09;。 Web API 是 Web 的应用程序编程接口…...

2023华为OD机试真题Java实现【寻找最大价值的矿堆/深度优先搜索】

前言 本题使用Java实现,如果需要Python代码,请点击以下链接 点我 题目 我们规定,0表示空地,1表示银矿、2表示金矿,矿堆表示由相邻的金矿或银矿连接形成的地图。 银矿价值是1 ,金矿价值是2 ,你的目标是找出地图中最大价值的矿堆,并且输出该矿堆的价值 示例1 输入:…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践

前言&#xff1a;本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中&#xff0c;跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南&#xff0c;你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案&#xff0c;并结合内网…...

实战设计模式之模板方法模式

概述 模板方法模式定义了一个操作中的算法骨架&#xff0c;并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下&#xff0c;重新定义算法中的某些步骤。简单来说&#xff0c;就是在一个方法中定义了要执行的步骤顺序或算法框架&#xff0c;但允许子类…...

链式法则中 复合函数的推导路径 多变量“信息传递路径”

非常好&#xff0c;我们将之前关于偏导数链式法则中不能“约掉”偏导符号的问题&#xff0c;统一使用 二重复合函数&#xff1a; z f ( u ( x , y ) , v ( x , y ) ) \boxed{z f(u(x,y),\ v(x,y))} zf(u(x,y), v(x,y))​ 来全面说明。我们会展示其全微分形式&#xff08;偏导…...