【Pandas】学习笔记之groupby()、agg()、transform()
在数据分析过程中经常需要对数据集进行分组,并且统计均值,最大值等等。那么 groupby() 的学习就十分有必要了
groupby(): 分组
官方文档:
DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, observed=False, dropna=True)
A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.
Parameters:
- by
- axis
- level
- as_index
- sort
- group_keys
- observed
- dropna
Returns:
DataFrameGroupBy , Returns a groupby object that contains information about the groups.
生成一个学生数据集,包含身高和成绩:
import pandas as pd
import numpy as npclasses = ["A", "B", "C"]student = pd.DataFrame({'class': [classes[x] for x in np.random.randint(0,len(classes),10)],'height': np.random.randint(150, 190, 10),'score': np.random.randint(50, 100, 10)})
按班级分组:
# 按班级分组
group = student.groupby('class')# pandas.core.groupby.generic.DataFrameGroupBy
type(group)
list(group) 的结果是:
Out[]:
[('A',class height score score_mean3 A 167 65 74.3333338 A 163 73 74.3333339 A 167 85 74.333333),('B',class height score score_mean1 B 175 76 59.6666676 B 151 53 59.6666677 B 185 50 59.666667),('C',class height score score_mean0 C 166 65 71.02 C 185 61 71.04 C 183 59 71.05 C 182 99 71.0)]
可以看到,groupby的过程将整个df按照指定的字段分为若干个子df
之后的agg、apply等操作都是对子df的操作
agg(): 聚合操作
常见的有:
- min最小值
- max最大值
- sum求和
- mean求均值
- count计数
- median中位数
- std标准差
- var方差
# 聚合操作之后的返回值类型为dataframe
a = student.groupby('class').agg('mean')
a = group.agg('mean')# 可以用字典来指定对不用的列求不同的值
b = student.groupby('class').agg({'score':'mean','height':'median'})
a:
Out[]: height score
class
A 165.666667 74.333333
B 170.333333 59.666667
C 179.000000 71.000000
b:
Out[26]: score height
class
A 74.333333 167.0
B 59.666667 175.0
C 71.000000 182.5
transform()
agg() 是返回统计的结果,返回值为df
transform() 对每一条数据进行处理, 相同组有相同的结果, 组内求完均值后会按照原索引的顺序返回结果
返回series
如果要在student上加一列学生所在班级的平均分
不使用transform需要两步:
# 1.先得到班级平均值的dict
avg_score_dict = student.groupby('class')['score'].mean().to_dict()
# 2.再对每个学生根据班级map一下
student['score_mean'] = student['class'].map(avg_score_dict)
使用transform只需要一步:
student['score_mean'] = student.groupby('class')['score'].transform('mean')
apply():
能够传入任意自定义的函数,实现复杂的数据操作
注意:
- groupby后的apply,以分组后的子DataFrame作为参数传入指定函数的,基本操作单位是DataFrame,而之前介绍的apply的基本操作单位是Series
- apply拥有更大的灵活性,但运行效率会比agg和transform更慢
假设我需要获取每个班分数最高的学生的数据:
# 获取分数最高的学生
def get_highest_student(x):df = x.sort_values(by='score', ascending=False)return df.iloc[0, :]highest_student = student.groupby('class', as_index=False).apply(get_highest_student)
相关文章:
【Pandas】学习笔记之groupby()、agg()、transform()
在数据分析过程中经常需要对数据集进行分组,并且统计均值,最大值等等。那么 groupby() 的学习就十分有必要了 groupby(): 分组 官方文档: DataFrame.groupby(byNone, axis0, levelNone, as_indexTrue, sortTrue, group_keysTrue, observedF…...
使用正则表达式 移除 HTML 标签后得到字符串
需求分析 后台返回的数据是 这样式的 需要讲html 标签替换 high_light_text: "<span stylecolor:red>OPPO</span> <span stylecolor:red>OPPO</span> 白色 01"使用正则表达式 function stripHTMLTags(htmlString) {return htmlString.rep…...
Java中String方法魔性学习
这里写目录标题 先进行专栏介绍String详解常用构造方法代码演示常用成员方法代码示例总结 先进行专栏介绍 本专栏是自己学Java的旅途,纯手敲的代码,自己跟着黑马课程学习的,并加入一些自己的理解,对代码和笔记 进行适当修改。希望…...
Smartbi 权限绕过漏洞复现(QVD-2023-17461)
0x01 产品简介 Smartbi大数据分析产品融合BI定义的所有阶段,对接各种业务数据库、数据仓库和大数据分析平台,进行加工处理、分析挖掘和可视化展现;满足所有用户的各种数据分析应用需求,如大数据分析、可视化分析、探索式分析、复杂…...
springboot自定义错误消息
为了提供自定义错误消息提示,springboot在resources目录下,有一个文件ValidationMessages.properties 用于存储 验证错误的消息提示: 比如: 这样一个ValidationMessage.properties username.notempty用户名不能为空 username.len…...
微信小程序申请步骤
微信公众平台链接:https://mp.weixin.qq.com/ 1、进到微信公众平台,点一下“点击注册”,挑选账号申请种类“小程序”,填好微信小程序用户信息,包含电子邮箱、登陆密码等。 2、微信公众平台会发送一封电子邮件…...
嘉楠勘智k230开发板上手记录(四)--HHB神经网络模型部署工具
按照K230_AI实战_HHB神经网络模型部署工具.md,HHB文档,RISC-V 编译器和模拟器安装来 一、环境 1. 拉取docker 镜像然后创建docker容器并进入容器 docker pull hhb4tools/hhb:2.4.5 docker run -itd --namehhb2_4 -p 22 "hhb4tools/hhb:2.4.5"…...
微信小程序的自定义TabBar及Vant的使用
一、安装Vant 1、在 资源管理器 空白位置,点右键打开 在外部终端窗口打开 2、初始化NPM npm init -y 3、安装命令 npm i vant/weapp1.3.3 -S --production 4、构建NPM包 在 工具 里选择构建NPM包 5、删除style:v2 在app.json里,删除"style"…...
canvas实现代码雨
学习抖音: 渡一前端必修课 效果图: 全部代码: <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge">&…...
基于MFCC特征提取和HMM模型的语音合成算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022A 3.部分核心程序 ............................................................................ %hmm是已经…...
多重网格算法的cuda编程
这里写自定义目录标题 多重网格算法介绍问题描述——五点差分法求解二维泊松方程五点差分法Gauss迭代算法限制算子介绍提升算子二重网格算法多重网格算法多重网格cuda代码编写串行代码mg.c两重网格cuda并行代码jacobi迭代的cuda编程device_jacobiMakefilecuda_mg.cucuda_mg.hma…...
DP(状态机模型)
大盗阿福 阿福是一名经验丰富的大盗。趁着月黑风高,阿福打算今晚洗劫一条街上的店铺。 这条街上一共有 N 家店铺,每家店中都有一些现金。 阿福事先调查得知,只有当他同时洗劫了两家相邻的店铺时,街上的报警系统才会启动&#x…...
按照指定的文件顺序进行scp传输
前言 scp 默认传输顺序是按照文件名进行排序的, 但我当前工作中遇到要验证两台机器的神经网络层的精度,需要把网络层的输入输出(假设有100层, 一共64G) 从机器1传输到机器2 , 然后进行对比;这种情况下最好…...
小红书数据分析丨现实版模拟人生,这届网友热衷于“云开店”?
近期,小红书出现的一个神秘的热心群体,他们经常活跃在各种小店店主发布的求助帖评论区中,积极地帮助店主出谋划策,寻找小店经营的优化之道,成功帮助小店成功转亏为盈!江湖人称一一云股东。小红书话题#爱上帮…...
休闲卤味强势崛起:卤味零食成为新一代热门美食
随着人们生活水平的提高和消费观念的转变,休闲卤味逐渐成为了人们日常生活中的热门美食。据最新数据显示,2022年,我国卤味市场销售额达到了约2000亿元,预计到2025年将突破3000亿元大关。其中,休闲卤味以每年10%的速度持…...
自除数-C语言
描述 给定两个整数 left 和 right ,返回一个列表,列表的元素是范围 [left, right] 内所有的 自除数。 1 < left < right < 104 自除数 是指可以被它包含的每一位数整除的数,自除数 不允许包含 0 。例如,128 是一个 自除…...
-bash: ./startup.sh: Permission denied解决
今天在Linux上启动Tomcat,结果弹出:-bash: ./startup.sh: Permission denied 的提示。 这是因为用户没有权限,而导致无法执行。用命令chmod 修改一下bin目录下的.sh权限就可以了。 在Tomcat的bin目录下 ,输入命令行 :c…...
Java课题笔记~ AOP 概述
AOP 简介 AOP(Aspect Orient Programming)面向切面编程。 面向切面编程是从动态角度考虑程序运行过程。 AOP的底层,就是采用动态代理的方式实现的。 采用了两种代理:JDK动态代理、CGLIB动态代理。 JDK动态代理:使…...
真我V3 5G(RMX2200 RMX2201)解锁刷机全过程
安卓系统新Rom包为GSI,更具有通用性,可以比较放心刷。 原厂系统垃圾多、广告多,甚至热点功能不支持ipv6,严重偏离热点机的定位。 主要参考 https://www.bilibili.com/read/cv20730877/https://www.bilibili.com/read/cv2073087…...
springCache-缓存
SpringCache 简介:是一个框架,实现了基于注解的缓存功能,底层可以切换不同的cache的实现,具体是通过CacheManager接口实现 使用springcache,根据实现的缓存技术,如使用的redis,需要导入redis的依赖包 基于map缓存 …...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
