当前位置: 首页 > news >正文

【Pandas】学习笔记之groupby()、agg()、transform()

在数据分析过程中经常需要对数据集进行分组,并且统计均值,最大值等等。那么 groupby() 的学习就十分有必要了


groupby(): 分组

官方文档:

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, observed=False, dropna=True)

A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.

Parameters:

  • by
  • axis
  • level
  • as_index
  • sort
  • group_keys
  • observed
  • dropna

Returns:
DataFrameGroupBy , Returns a groupby object that contains information about the groups.


生成一个学生数据集,包含身高和成绩:

import pandas as pd
import numpy as npclasses = ["A", "B", "C"]student = pd.DataFrame({'class': [classes[x] for x in np.random.randint(0,len(classes),10)],'height': np.random.randint(150, 190, 10),'score': np.random.randint(50, 100, 10)})

按班级分组:

# 按班级分组
group = student.groupby('class')# pandas.core.groupby.generic.DataFrameGroupBy
type(group)

list(group) 的结果是:

Out[]: 
[('A',class  height  score  score_mean3     A     167     65   74.3333338     A     163     73   74.3333339     A     167     85   74.333333),('B',class  height  score  score_mean1     B     175     76   59.6666676     B     151     53   59.6666677     B     185     50   59.666667),('C',class  height  score  score_mean0     C     166     65        71.02     C     185     61        71.04     C     183     59        71.05     C     182     99        71.0)]

可以看到,groupby的过程将整个df按照指定的字段分为若干个子df
之后的agg、apply等操作都是对子df的操作


agg(): 聚合操作

常见的有:

  • min最小值
  • max最大值
  • sum求和
  • mean求均值
  • count计数
  • median中位数
  • std标准差
  • var方差
# 聚合操作之后的返回值类型为dataframe
a = student.groupby('class').agg('mean')
a = group.agg('mean')# 可以用字典来指定对不用的列求不同的值
b = student.groupby('class').agg({'score':'mean','height':'median'})

a:

Out[]: height      score
class                       
A      165.666667  74.333333
B      170.333333  59.666667
C      179.000000  71.000000

b:

Out[26]: score  height
class                   
A      74.333333   167.0
B      59.666667   175.0
C      71.000000   182.5

transform()

agg() 是返回统计的结果,返回值为df
transform() 对每一条数据进行处理, 相同组有相同的结果, 组内求完均值后会按照原索引的顺序返回结果
返回series

如果要在student上加一列学生所在班级的平均分
不使用transform需要两步:

# 1.先得到班级平均值的dict
avg_score_dict = student.groupby('class')['score'].mean().to_dict()
# 2.再对每个学生根据班级map一下
student['score_mean'] = student['class'].map(avg_score_dict)

使用transform只需要一步:

student['score_mean'] = student.groupby('class')['score'].transform('mean')

apply():

能够传入任意自定义的函数,实现复杂的数据操作
注意:

  • groupby后的apply,以分组后的子DataFrame作为参数传入指定函数的,基本操作单位是DataFrame,而之前介绍的apply的基本操作单位是Series
  • apply拥有更大的灵活性,但运行效率会比agg和transform更慢

假设我需要获取每个班分数最高的学生的数据:

# 获取分数最高的学生
def get_highest_student(x):df = x.sort_values(by='score', ascending=False)return df.iloc[0, :]highest_student = student.groupby('class', as_index=False).apply(get_highest_student)

相关文章:

【Pandas】学习笔记之groupby()、agg()、transform()

在数据分析过程中经常需要对数据集进行分组,并且统计均值,最大值等等。那么 groupby() 的学习就十分有必要了 groupby(): 分组 官方文档: DataFrame.groupby(byNone, axis0, levelNone, as_indexTrue, sortTrue, group_keysTrue, observedF…...

使用正则表达式 移除 HTML 标签后得到字符串

需求分析 后台返回的数据是 这样式的 需要讲html 标签替换 high_light_text: "<span stylecolor:red>OPPO</span> <span stylecolor:red>OPPO</span> 白色 01"使用正则表达式 function stripHTMLTags(htmlString) {return htmlString.rep…...

Java中String方法魔性学习

这里写目录标题 先进行专栏介绍String详解常用构造方法代码演示常用成员方法代码示例总结 先进行专栏介绍 本专栏是自己学Java的旅途&#xff0c;纯手敲的代码&#xff0c;自己跟着黑马课程学习的&#xff0c;并加入一些自己的理解&#xff0c;对代码和笔记 进行适当修改。希望…...

Smartbi 权限绕过漏洞复现(QVD-2023-17461)

0x01 产品简介 Smartbi大数据分析产品融合BI定义的所有阶段&#xff0c;对接各种业务数据库、数据仓库和大数据分析平台&#xff0c;进行加工处理、分析挖掘和可视化展现&#xff1b;满足所有用户的各种数据分析应用需求&#xff0c;如大数据分析、可视化分析、探索式分析、复杂…...

springboot自定义错误消息

为了提供自定义错误消息提示&#xff0c;springboot在resources目录下&#xff0c;有一个文件ValidationMessages.properties 用于存储 验证错误的消息提示&#xff1a; 比如&#xff1a; 这样一个ValidationMessage.properties username.notempty用户名不能为空 username.len…...

微信小程序申请步骤

微信公众平台链接&#xff1a;https://mp.weixin.qq.com/ 1、进到微信公众平台&#xff0c;点一下“点击注册”&#xff0c;挑选账号申请种类“小程序”&#xff0c;填好微信小程序用户信息&#xff0c;包含电子邮箱、登陆密码等。 2、微信公众平台会发送一封电子邮件&#xf…...

嘉楠勘智k230开发板上手记录(四)--HHB神经网络模型部署工具

按照K230_AI实战_HHB神经网络模型部署工具.md&#xff0c;HHB文档&#xff0c;RISC-V 编译器和模拟器安装来 一、环境 1. 拉取docker 镜像然后创建docker容器并进入容器 docker pull hhb4tools/hhb:2.4.5 docker run -itd --namehhb2_4 -p 22 "hhb4tools/hhb:2.4.5"…...

微信小程序的自定义TabBar及Vant的使用

一、安装Vant 1、在 资源管理器 空白位置&#xff0c;点右键打开 在外部终端窗口打开 2、初始化NPM npm init -y 3、安装命令 npm i vant/weapp1.3.3 -S --production 4、构建NPM包 在 工具 里选择构建NPM包 5、删除style:v2 在app.json里&#xff0c;删除"style"…...

canvas实现代码雨

学习抖音&#xff1a; 渡一前端必修课 效果图&#xff1a; 全部代码&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge">&…...

基于MFCC特征提取和HMM模型的语音合成算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022A 3.部分核心程序 ............................................................................ %hmm是已经…...

多重网格算法的cuda编程

这里写自定义目录标题 多重网格算法介绍问题描述——五点差分法求解二维泊松方程五点差分法Gauss迭代算法限制算子介绍提升算子二重网格算法多重网格算法多重网格cuda代码编写串行代码mg.c两重网格cuda并行代码jacobi迭代的cuda编程device_jacobiMakefilecuda_mg.cucuda_mg.hma…...

DP(状态机模型)

大盗阿福 阿福是一名经验丰富的大盗。趁着月黑风高&#xff0c;阿福打算今晚洗劫一条街上的店铺。 这条街上一共有 N 家店铺&#xff0c;每家店中都有一些现金。 阿福事先调查得知&#xff0c;只有当他同时洗劫了两家相邻的店铺时&#xff0c;街上的报警系统才会启动&#x…...

按照指定的文件顺序进行scp传输

前言 scp 默认传输顺序是按照文件名进行排序的&#xff0c; 但我当前工作中遇到要验证两台机器的神经网络层的精度&#xff0c;需要把网络层的输入输出&#xff08;假设有100层&#xff0c; 一共64G) 从机器1传输到机器2 &#xff0c; 然后进行对比&#xff1b;这种情况下最好…...

小红书数据分析丨现实版模拟人生,这届网友热衷于“云开店”?

近期&#xff0c;小红书出现的一个神秘的热心群体&#xff0c;他们经常活跃在各种小店店主发布的求助帖评论区中&#xff0c;积极地帮助店主出谋划策&#xff0c;寻找小店经营的优化之道&#xff0c;成功帮助小店成功转亏为盈&#xff01;江湖人称一一云股东。小红书话题#爱上帮…...

休闲卤味强势崛起:卤味零食成为新一代热门美食

随着人们生活水平的提高和消费观念的转变&#xff0c;休闲卤味逐渐成为了人们日常生活中的热门美食。据最新数据显示&#xff0c;2022年&#xff0c;我国卤味市场销售额达到了约2000亿元&#xff0c;预计到2025年将突破3000亿元大关。其中&#xff0c;休闲卤味以每年10%的速度持…...

自除数-C语言

描述 给定两个整数 left 和 right &#xff0c;返回一个列表&#xff0c;列表的元素是范围 [left, right] 内所有的 自除数。 1 < left < right < 104 自除数 是指可以被它包含的每一位数整除的数&#xff0c;自除数 不允许包含 0 。例如&#xff0c;128 是一个 自除…...

-bash: ./startup.sh: Permission denied解决

今天在Linux上启动Tomcat&#xff0c;结果弹出&#xff1a;-bash: ./startup.sh: Permission denied 的提示。 这是因为用户没有权限&#xff0c;而导致无法执行。用命令chmod 修改一下bin目录下的.sh权限就可以了。 在Tomcat的bin目录下 &#xff0c;输入命令行 &#xff1a;c…...

Java课题笔记~ AOP 概述

AOP 简介 AOP&#xff08;Aspect Orient Programming&#xff09;面向切面编程。 面向切面编程是从动态角度考虑程序运行过程。 AOP的底层&#xff0c;就是采用动态代理的方式实现的。 采用了两种代理&#xff1a;JDK动态代理、CGLIB动态代理。 JDK动态代理&#xff1a;使…...

真我V3 5G(RMX2200 RMX2201)解锁刷机全过程

安卓系统新Rom包为GSI&#xff0c;更具有通用性&#xff0c;可以比较放心刷。 原厂系统垃圾多、广告多&#xff0c;甚至热点功能不支持ipv6&#xff0c;严重偏离热点机的定位。 主要参考 https://www.bilibili.com/read/cv20730877/https://www.bilibili.com/read/cv2073087…...

springCache-缓存

SpringCache 简介&#xff1a;是一个框架&#xff0c;实现了基于注解的缓存功能&#xff0c;底层可以切换不同的cache的实现&#xff0c;具体是通过CacheManager接口实现 使用springcache,根据实现的缓存技术&#xff0c;如使用的redis,需要导入redis的依赖包 基于map缓存 …...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...