两个状态的马尔可夫链
手动推导如下公式。

证明:
- 首先将如下矩阵对角化:
{ 1 − a a b 1 − b } \begin {Bmatrix} 1-a & a \\ b & 1-b \end {Bmatrix} {1−aba1−b}
(1)求如下矩阵的特征值:
{ 1 − a a b 1 − b } { x 1 x 2 } = λ { x 1 x 2 } = = > \begin {Bmatrix} 1-a & a \\ b & 1-b \end {Bmatrix} \begin {Bmatrix} x_1 \\x_2 \end {Bmatrix} = \lambda \begin {Bmatrix} x_1 \\x_2 \end {Bmatrix} == > {1−aba1−b}{x1x2}=λ{x1x2}==>
∣ 1 − a − λ a b 1 − b − λ ∣ = 0 = = > \begin {vmatrix} 1-a - \lambda& a \\ b & 1-b - \lambda \end {vmatrix} = 0 ==> 1−a−λba1−b−λ =0==>
( 1 − a − λ ) ( 1 − b − λ ) − a b = 0 = = > (1-a- \lambda)(1-b - \lambda) - ab = 0 ==> (1−a−λ)(1−b−λ)−ab=0==>
λ 2 + ( a + b − 2 ) λ + ( 1 − a − b ) = 0 = = > λ = ( 2 − a − b ) + − ( a + b − 2 ) 2 − 4 ( 1 − a − b ) 2 = ( 2 − a − b ) + − ( a + b ) 2 = ( 1 ) o r ( 1 − a − b ) \lambda^2 +(a+b-2)\lambda + (1-a-b) = 0 ==> \\ \lambda = \frac{(2-a-b) +- \sqrt{(a+b-2)^2-4(1-a-b)}}{2} = \\ \frac{(2-a-b) +- (a+b)}{2} = (1) or (1-a-b) λ2+(a+b−2)λ+(1−a−b)=0==>λ=2(2−a−b)+−(a+b−2)2−4(1−a−b)=2(2−a−b)+−(a+b)=(1)or(1−a−b)
(2)求得正交特征向量
∣ − a a b − b ∣ ∣ x 1 x 2 ∣ = 0 = = > x 1 = 1 , x 2 = 1 \begin {vmatrix} -a & a \\ b &-b \end {vmatrix} \begin {vmatrix} x_1 \\x_2 \end {vmatrix} = 0 ==> x_1 = 1,x_2 = 1 −aba−b x1x2 =0==>x1=1,x2=1
∣ b a b a ∣ ∣ x 1 x 2 ∣ = 0 = = > x 1 = a , x 2 = − b \begin {vmatrix} b & a \\ b &a \end {vmatrix} \begin {vmatrix} x_1 \\x_2 \end {vmatrix} = 0 ==> x_1 = a,x_2 = -b bbaa x1x2 =0==>x1=a,x2=−b
也即:
A = P − 1 Λ P = { 1 2 a a 2 + b 2 1 2 − b a 2 + b 2 } { 1 0 0 1 − a − b } { 1 2 1 2 a a 2 + b 2 − b a 2 + b 2 } A = P^{-1} \Lambda P = \begin {Bmatrix} \frac{1}{\sqrt{2}} & \frac{a}{\sqrt{a^2+b^2}} \\\\ \frac{1}{\sqrt{2}} & \frac{-b}{\sqrt{a^2+b^2}} \end {Bmatrix} \begin {Bmatrix} 1 & 0\\\\ 0& 1 - a - b \end {Bmatrix} \begin {Bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \\ \frac{a} {\sqrt{a^2+b^2}} & \frac{-b}{\sqrt{a^2+b^2}} \end {Bmatrix} A=P−1ΛP=⎩ ⎨ ⎧2121a2+b2aa2+b2−b⎭ ⎬ ⎫⎩ ⎨ ⎧1001−a−b⎭ ⎬ ⎫⎩ ⎨ ⎧21a2+b2a21a2+b2−b⎭ ⎬ ⎫
A n = P − 1 Λ n P = { 1 2 a a 2 + b 2 1 2 − b a 2 + b 2 } { 1 0 0 ( 1 − a − b ) n } { 1 2 1 2 a a 2 + b 2 − b a 2 + b 2 } = { 1 2 + a 2 ( 1 − a − b ) 2 a 2 + b 2 1 2 + − a b ( 1 − a − b ) 2 a 2 + b 2 1 2 + − a b ( 1 − a − b ) 2 a 2 + b 2 1 2 + b 2 ( 1 − a − b ) 2 a 2 + b 2 } A^n = P^{-1} \Lambda^n P = \begin {Bmatrix} \frac{1}{\sqrt{2}} & \frac{a}{\sqrt{a^2+b^2}} \\\\ \frac{1}{\sqrt{2}} & \frac{-b}{\sqrt{a^2+b^2}} \end {Bmatrix} \begin {Bmatrix} 1 & 0\\\\ 0& (1 - a - b)^n \end {Bmatrix} \begin {Bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \\ \frac{a} {\sqrt{a^2+b^2}} & \frac{-b}{\sqrt{a^2+b^2}} \end {Bmatrix} =\\ \\ \begin {Bmatrix} \frac{1}{2} + \frac{a^2 (1-a-b)^2}{a^2+b^2} & \frac{1}{2} + \frac{-ab (1-a-b)^2}{a^2+b^2} \\\\ \frac{1}{2} + \frac{-ab (1-a-b)^2}{a^2+b^2} & \frac{1}{2} + \frac{b^2 (1-a-b)^2}{a^2+b^2} \end {Bmatrix} An=P−1ΛnP=⎩ ⎨ ⎧2121a2+b2aa2+b2−b⎭ ⎬ ⎫⎩ ⎨ ⎧100(1−a−b)n⎭ ⎬ ⎫⎩ ⎨ ⎧21a2+b2a21a2+b2−b⎭ ⎬ ⎫=⎩ ⎨ ⎧21+a2+b2a2(1−a−b)221+a2+b2−ab(1−a−b)221+a2+b2−ab(1−a−b)221+a2+b2b2(1−a−b)2⎭ ⎬ ⎫
相关文章:
两个状态的马尔可夫链
手动推导如下公式。 证明: 首先将如下矩阵对角化: { 1 − a a b 1 − b } \begin {Bmatrix} 1-a & a \\ b & 1-b \end {Bmatrix} {1−aba1−b} (1)求如下矩阵的特征值: { 1 − a a b 1 − b } { x 1 x 2 } λ { x 1 x 2 }…...
SpringBoot 依赖管理
Spring Boot 依赖管理 1. 父项目做依赖管理 无需关注版本号,自动版本仲裁机制 <!-- 依赖管理 --> <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version&g…...
重试框架入门:Spring-RetryGuava-Retry
前言 在日常工作中,随着业务日渐庞大,不可避免的涉及到调用远程服务,但是远程服务的健壮性和网络稳定性都是不可控因素,因此,我们需要考虑合适的重试机制去处理这些问题,最基础的方式就是手动重试…...
[QCM6125][Android13] 修复PRODUCT_COPY_FILES无法拷贝so
文章目录 开发平台基本信息问题描述解决方法 开发平台基本信息 芯片: QCM6125 版本: Android 13 kernel: msm-4.14 问题描述 在进行系统移植时,经常会把一些自己开发的c或者c程序编译成so库,然后在系统服务中去调用这些库。所以在进行新代码开发时&am…...
微服务Eureka注册中心
目录 一、Eureka的结构和作用 二、搭建eureka-server 三、服务注册 四、服务发现 假如我们的服务提供者user-service部署了多个实例,如图: 存在的问题: order-service在发起远程调用的时候,该如何得知user-service实例的ip地址…...
Java:企业级java后端开发,需要掌握哪些内容
一、什么是后端开发 后端开发是指开发基于服务器端的软件应用程序,也称为系统的后台或服务器端编程。 后端程序员负责处理网站或应用程序后台的逻辑和功能,包括数据库管理、服务器端脚本编写、API设计、数据安全性、网站性能优化等。 后端开发技术通常包…...
使用Go语言生成Excel任务表依赖图(Markdown文件mermaid图)
一、前言 在游戏中,任务是非常常见的玩法,可能会有主线任务,支线任务以及其它一些类型的任务,各任务可能还会有前置任务,即需要完成某个任务之后,才能做当前任务。在游戏开发中,配置表可以使用…...
C语言和C++的区别在哪?如何自学C++?
C语言和C是两种不同的编程语言,它们在语法、特性和用途上有一些区别。以下是C语言和C的一些主要区别: 面向对象编程:C是一种支持面向对象编程的语言,它在C语言的基础上添加了类、对象、继承、多态等面向对象的特性。而C语言是一种…...
功能强大的开源数据中台系统 DataCap 1.13.0 发布
推荐一套基于 SpringBoot 开发的简单、易用的开源权限管理平台,建议下载使用: https://github.com/devlive-community/authx 推荐一套为 Java 开发人员提供方便易用的 SDK 来与 OpenAI 的 API 进行交互组件:https://github.com/devlive-community/openai…...
JTS Self-intersection异常TopologyException: side location conflict解决办法
JTS Self-intersection异常TopologyException: side location conflict解决办法 举例:问题围栏 MULTIPOLYGON (((114.0905685 32.1120567, 114.0905685 32.112957, 114.0905685 32.1138535, 114.0905685 32.1147537, 114.0905685 32.115654, 114.0905685 32.11655…...
Maven: No compiler is provided in this environment.
在Eclipse中运行Maven项目,报错: No compiler is provided in this environment. Perhaps you are running on a JRE rather than a JDK? 解决方法: Windows > Preferences > Java > Installed JREs > Add > Standard VM,…...
.NET-10. 其他-VSTO+VBA
VSTOVBA 前言VSTO 外接程序介绍:VSTO参考链接:VSTO 例子: VBA:参考链接: 前言 主要用于Excel插件。 VSTO 外接程序介绍: Excel、Word、PowerPoint、Project、Visio等等Office应用程序 相对简单 VSTO参考链接&#x…...
相机传感器格式与镜头光圈参数
相机靶面大小 CCD/CMOS图像传感器尺寸(sensor format)1/2’‘、1/3’‘、1/4’实际是多大 1英寸——靶面尺寸为宽12.7mm*高9.6mm,对角线16mm。 2/3英寸——靶面尺寸为宽8.8mm*高6.6mm,对角线11mm。 1/2英寸——靶面尺寸为宽6.…...
Android 设置头像(拍照获取、相册获取、裁剪照片)
在Android原生态开发过程中,往往会设计到用户头像的设置问题,一般来讲设置头像需要用到拍照、获取照片、存储照片、裁剪照片、显示照片等问题,本文将一步一步的进行说明讲解。 首先需要强调几点我在开发过程中遇到的问题。 权限问题…...
android开发之Android 自定义滑动解锁View
自定义滑动解锁View 需求如下: 近期需要做一个类似屏幕滑动解锁的功能,右划开始,左划暂停。 需求效果图如下 实现效果展示 自定义view如下 /** Desc 自定义滑动解锁View Author ZY Mail sunnyfor98gmail.com Date 2021/5/17 11:52 *…...
CAD绘制法兰、添加光源、材质并渲染
首先绘制两个圆柱体,相互嵌套 在顶部继续绘制圆柱体,这是之后要挖掉的部分 在中央位置绘制正方形 用圆角工具: 将矩形的四个角分别处理,效果: 用拉伸工具 向上拉伸到和之前绘制的圆柱体高度齐平 绘制一个圆柱体&#…...
ChatGPT访问流量下降的原因分析
自从OpenAI的ChatGPT于11月问世以来,这款聪明的人工智能聊天机器人就席卷了全世界,人们在试用该工具的同时也好奇该技术到底将如何改变我们的工作和生活。 但近期Similarweb表示,自去ChatGPT上线以来,该网站的访问量首次出现下…...
干货 | 详述 Elasticsearch 向量检索发展史
1. 引言 向量检索已经成为现代搜索和推荐系统的核心组件。 通过将复杂的对象(例如文本、图像或声音)转换为数值向量,并在多维空间中进行相似性搜索,它能够实现高效的查询匹配和推荐。 图片来自:向量数据库技术鉴赏【上…...
mysql常见面试题,高频题目放送
互联网的产品架构是包含这接入层,逻辑处理以及储存层的,其中储存层承载着较多的数据以及持久化的任务,而说到储存层,避免不了说到数据库,在我们面试的时候,数据库的知识题目占比是非常多的: 1.…...
使用 PowerShell 将 Excel 中的每个工作表单独另存为独立的文件
导语:在日常工作中,我们经常需要处理 Excel 文件。本文介绍了如何使用 PowerShell 脚本将一个 Excel 文件中的每个工作表单独另存为独立的 Excel 文件,以提高工作效率。 1. 准备工作 在开始之前,请确保已经安装了 Microsoft Exc…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
