【torch.nn.PixelShuffle】和 【torch.nn.UnpixelShuffle】
文章目录
- torch.nn.PixelShuffle
- 直观解释
- 官方文档
- torch.nn.PixelUnshuffle
- 直观解释
- 官方文档
torch.nn.PixelShuffle
直观解释
PixelShuffle是一种上采样方法,它将形状为 ( ∗ , C × r 2 , H , W ) (∗, C\times r^2, H, W) (∗,C×r2,H,W)的张量重新排列转换为形状为 ( ∗ , C , H × r , W × r ) (∗, C, H\times r, W\times r) (∗,C,H×r,W×r)的张量:
举个例子
输入的张量大小是(1,8,2,3)
,PixelShuffle的 缩放因子是r=2
。
import torch
ps=torch.nn.PixelShuffle(2)
input=torch.arange(0,48).view(1,8,2,3)
print(input)
output=ps(input)
print(output)
print(output.shape)
如下图可以看到,PixelShuffle是把输入通道按照缩放因子r^2
进行划分成8/(2^2)=2
组。
也就是输入的第一组(前4个
通道)中的元素,每次间隔r=2
交错排列,合并成输出的第一个通道维度。
输入的第二组(后4个通道)中的元素,每次间隔r=2
交错排列,合并成输出通道的第二个维度。
输入的大小为(batchsize,in_channel,in_height,in_width)=(1,8,2,3)
输出的大小为(batchsize,out_channel,out_height,out_width)(1,2,4,6)
各个维度的变化规律如下:
batchsize
不变;
out_channel=in_channel/(r^2)
out_height=in_height*r
out_width=in_width*r
官方文档
CLASS
torch.nn.PixelShuffle(upscale_factor)
-
功能: 把大小为 ( ∗ , C × r 2 , H , W ) (*,C\times r^2,H,W) (∗,C×r2,H,W)的张量重新排列为大小为 ( ∗ , C , H × r , W × r ) (*,C,H\times r,W\times r) (∗,C,H×r,W×r) , 其中 r r r 是 upscale factor 。
这个操作对于实现步长为 1 r \frac {1}{r} r1的efficient sub-pixel convolution有用。
-
参数
- upscale_factor(int) : 增加空间分辨率的因子
-
形状
-
输入: ( ∗ , C i n , H i n , W i n ) (*,C_{in},H_{in},W_{in}) (∗,Cin,Hin,Win) ,其中 ∗ * ∗ 是 0 或者batch大小
-
输出: ( ∗ , C o u t , H o u t , W o u t ) (*,C_{out},H_{out},W_{out}) (∗,Cout,Hout,Wout) , 其中
C out = C in ÷ u p s c a l e _ f a c t o r 2 H out = H in × u p s c a l e _ f a c t o r W out = W in × u p s c a l e _ f a c t o r C_{\text {out }}=C_{\text {in }} \div upscale\_factor ^2 \\ H_{\text {out }}=H_{\text {in }} \times upscale\_factor \\ W_{\text {out }}=W_{\text {in }} \times upscale\_factor Cout =Cin ÷upscale_factor2Hout =Hin ×upscale_factorWout =Win ×upscale_factor
-
-
例子
>>> pixel_shuffle = nn.PixelShuffle(3)
>>> input = torch.randn(1, 9, 4, 4)
>>> output = pixel_shuffle(input)
>>> print(output.size())
torch.Size([1, 1, 12, 12])
torch.nn.PixelUnshuffle
直观解释
PixelUnshuffle就是PixelShuffle的逆操作。
import torch
pus=torch.nn.PixelUnshuffle(2)
input_restore=pus(putput)
print(input_restore)
print(input_restore.shape)
print(input_restore==input) # input_restore和input一样
官方文档
CLASS
torch.nn.PixelUnshuffle(downscale_factor)
-
功能: 是PixelShuffle的逆操作,把大小为 ( ∗ , C , H × r , W × r ) (*,C,H\times r,W\times r) (∗,C,H×r,W×r)的张量重组成大小为 ( ∗ , C × r , H , W ) (*,C\times r,H,W) (∗,C×r,H,W)的张量。其中 r r r 是downscale factor。
-
参数:
downscale_factor (int)
: 降低空间分辨率的因子。
-
形状:
-
输入: ( ∗ , C i n , H i n , W i n ) (*,C_{in},H_{in},W_{in}) (∗,Cin,Hin,Win), 其中 ∗ * ∗ 是 0 或者batch大小
-
输出: ( ∗ , C o u t , H o u t , W o u t ) (*,C_{out},H_{out},W_{out}) (∗,Cout,Hout,Wout), 其中
C out = C in × downscale _ factor 2 H out = H in ÷ downscale _ factor W out = W in ÷ downscale _ factor \begin{aligned}& C_{\text {out }}=C_{\text {in }} \times \text { downscale } \_ \text {factor }{ }^2 \\& H_{\text {out }}=H_{\text {in }} \div \text { downscale } \_ \text {factor } \\& W_{\text {out }}=W_{\text {in }} \div \text { downscale } \_ \text {factor }\end{aligned} Cout =Cin × downscale _factor 2Hout =Hin ÷ downscale _factor Wout =Win ÷ downscale _factor
-
-
例子
>>> pixel_unshuffle = nn.PixelUnshuffle(3)
>>> input = torch.randn(1, 1, 12, 12)
>>> output = pixel_unshuffle(input)
>>> print(output.size())
torch.Size([1, 9, 4, 4])
相关文章:

【torch.nn.PixelShuffle】和 【torch.nn.UnpixelShuffle】
文章目录 torch.nn.PixelShuffle直观解释官方文档 torch.nn.PixelUnshuffle直观解释官方文档 torch.nn.PixelShuffle 直观解释 PixelShuffle是一种上采样方法,它将形状为 ( ∗ , C r 2 , H , W ) (∗, C\times r^2, H, W) (∗,Cr2,H,W)的张量重新排列转换为形状为…...
Rocky9 KVM网桥的配置
KVM的默认网络模式为NAT,借助宿主机模式上网,现在我们来改成桥接模式,这样外界就可以直接和宿主机里的虚拟机通讯了。 Bridge方式即虚拟网桥的网络连接方式,是客户机和子网里面的机器能够互相通信。可以使虚拟机成为网络中具有独立IP的主机。 桥接网络(也叫物理设备共享…...

爬虫013_函数的定义_调用_参数_返回值_局部变量_全局变量---python工作笔记032
然后再来看函数,可以避免重复代码 可以看到定义函数以及调用函数...

将.doc文档的默认打开方式从WPS修改为word office打开方式的具体方法(以win 10 操作系统为例)
将.doc文档的默认打开方式从WPS修改为word office打开方式的具体方法(以win 10 操作系统为例) 随着近几年WPS软件的不断完善和丰富,在某些方面取得了具有特色的优势。在平时编辑.doc文档时候也常常用到wps软件,不过WPS文献也存在…...

如何搭建个人的GPT网页服务
写在前面 在创建个人的 GPT网页之前,我登录了 Git 并尝试了一些开源项目,但是没有找到满足我个性化需求的设计。虽然许多收费的 GPT网页提供了一些免费额度,足够我使用,但是公司的安全策略会屏蔽这些网页。因此,我决定…...
[QCM6125][Android13] 默认关闭SELinux权限
文章目录 开发平台基本信息问题描述解决方法 开发平台基本信息 芯片: QCM6125 版本: Android 13 kernel: msm-4.14 问题描述 正常智能硬件设备源码开发,到手的第一件事就是默认关闭SELinux权限,这样能够更加方便于调试功能。 解决方法 --- a/QSSI.1…...
【jvm】jvm发展历程
目录 一、Sun Classic VM二、Exact VM三、HotSpot VM四、JRockit五、J9六、KVM、CDC、CLDC七、Azul VM八、Liquid VM九、Apache Harmony十、Microsoft JVM十一、Taobao JVM十二、Dalvik VM 一、Sun Classic VM 1.1996年java1.0版本,sun公司发布了sun classic vm虚拟…...

Dubbo3.0 Demo
将SpringBoot工程集成Dubbo 1.创建父工程 2.创建子工程consumer,provider 3.初始化工程 4.引入依赖 在provider和consumer中引入dubbo依赖 <dependency><groupId>org.apache.dubbo</groupId><artifactId>dubbo-spring-boot-starter</a…...

源码分析——ConcurrentHashMap源码+底层数据结构分析
文章目录 1. ConcurrentHashMap 1.71. 存储结构2. 初始化3. put4. 扩容 rehash5. get 2. ConcurrentHashMap 1.81. 存储结构2. 初始化 initTable3. put4. get 3. 总结 1. ConcurrentHashMap 1.7 1. 存储结构 Java 7 中 ConcurrentHashMap 的存储结构如上图,Concurr…...
R语言中的函数25:paste,paste0
文章目录 介绍paste0()实例 paste()实例 介绍 paste0()和paste()函数都可以实现对字符串的连接,paste0是paste的简化版。 paste0() paste (..., sep " ", collapse NULL, recycle0 FALSE)… one or more R objects, to be converted to character …...

(八)穿越多媒体奇境:探索Streamlit的图像、音频与视频魔法
文章目录 1 前言2 st.image:嵌入图像内容2.1 图像展示与描述2.2 调整图像尺寸2.3 使用本地文件或URL 3 st.audio:嵌入音频内容3.1 播放音频文件3.2 生成音频数据播放 4 st.video:嵌入视频内容4.1 播放视频文件4.2 嵌入在线视频 5 结语&#x…...

CAD练习——绘制房子平面图
首先还是需要设置图层、标注、文字等 XL:构造线 用构造线勾勒大致的轮廓: 使用多线命令:ML 绘制墙壁 可以看到有很多交叉点的位置 用多线编辑工具将交叉点处理 有一部分处理不了的,先讲多线分解,然后用修剪打理&…...

spring 面试题
一、Spring面试题 专题部分 1.1、什么是spring? Spring是一个轻量级Java开发框架,最早有Rod Johnson创建,目的是为了解决企业级应用开发的业务逻辑层和其他各层的耦合问题。它是一个分层的JavaSE/JavaEE full-stack(一站式)轻量…...

Springboot项目集成Durid数据源和P6Spy以及dbType not support问题
项目开发阶段,mybatis的SQL打印有占位符,调试起来还是有点麻烦,随想整合P6Spy打印可以直接执行的SQL,方便调试,用的Durid连接池。 Springboot项目集成Durid <dependency><groupId>com.alibaba</group…...

安卓如何卸载应用
卸载系统应用 首先需要打开手机的开发者选项,启动usb调试。 第二步需要在电脑上安装adb命令,喜欢的话还可以将它加入系统path。如果不知道怎么安装,可以从这里下载免安装版本。 第三步将手机与电脑用数据线连接,注意是数据线&a…...
【云原生|Kubernetes】14-DaemonSet资源控制器详解
【云原生|Kubernetes】14-DaemonSet资源控制器详解 文章目录 【云原生|Kubernetes】14-DaemonSet资源控制器详解简介典型用法DaemonSet语法规则Pod模板Pod 选择算符在选定的节点上运行 Pod DaemonSet的 Pods 是如何被调度的污点和容忍度DaemonSet更新和回滚DaemonSet更新策略执…...
基于 Guava Retry 在Spring封装一个重试功能
pom依赖 <dependency><groupId>com.github.rholder</groupId><artifactId>guava-retrying</artifactId><version>2.0.0</version> </dependency> <dependency><groupId>org.springframework.boot</groupId>…...

适用HarmonyOS 3.1版本及以上的应用及服务开发工具 DevEco Studio 3.1.1 Release 安装
文章目录 安装步骤1.下载安装包2.安装成功后,初次运行studio2.1 配置node与ohpm的环境2.2安装sdk2.3等待安装结束 3.创建项目3.1 点击Create Project3.2 选择一个空项目3.3 项目配置3.4 Finish、等待依赖下载完毕3.5 项目创建完成 tip 提示4.配置运行环境4.1 真机运…...

[信号与系统系列] 正弦振幅调制之差拍信号
当将具有不同频率的两个正弦曲线相乘时,可以创建一个有趣的音频效果,称为差拍音符。这种现象听起来像颤音,最好通过选择一个频率非常小的信号与和另一个频率大约1KHz的信号,把二者混合从而听到。一些乐器能够自然产生差拍音符。使…...
vb+SQL航空公司管理系统设计与实现
航空公司管理信息系统 一个正常营运的航空公司需要管理所拥有的飞机、航线的设置、客户的信息等,更重要的还要提供票务管理。面对各种不同种类的信息,需要合理的数据库结构来保存数据信息以及有效的程序结构支持各种数据操作的执行。 本设计讲述如何建立一个航空公司管理信…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...

vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...

MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...
vue3 daterange正则踩坑
<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...

【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...