当前位置: 首页 > news >正文

Canal+Kafka实现Mysql数据同步

Canal介绍

canal [kə'næl],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费

canal可以用来监控数据库数据的变化,从而获得新增数据,或者修改的数据。

canal是应阿里巴巴存在杭州和美国的双机房部署,存在跨机房同步的业务需求而提出的。

阿里系公司开始逐步的尝试基于数据库的日志解析,获取增量变更进行同步,由此衍生出了增量订阅&消费的业务。

canal主要用途是基于 MySQL 数据库增量日志解析,并能提供增量数据订阅和消费,应用场景十分丰富。

目前canal主要支持mysql数据库。

github地址:https://github.com/alibaba/canal

版本下载地址:https://github.com/alibaba/canal/releases

文档地址:https://github.com/alibaba/canal/wiki/Docker-QuickStart

Canal应用场景

1)、电商场景下商品、用户实时更新同步到至Elasticsearch、solr等搜索引擎;
2)、价格、库存发生变更实时同步到redis;
3)、数据库异地备份、数据同步;
4)、代替使用轮询数据库方式来监控数据库变更,有效改善轮询耗费数据库资源。

image.png

MySQL主从复制原理

1)、MySQL master 将数据变更写入二进制日志( binary log, 其中记录叫做二进制日志事件binary log events,可以通过 show binlog events 进行查看)
2)、MySQL slave 将 master 的 binary log events 拷贝到它的中继日志(relay log)
3)、MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据

Canal工作原理

  • canal 模拟 MySQL slave 的交互协议,伪装自己为 MySQL slave ,向 MySQL master 发送 dump 协议
  • MySQL master 收到 dump 请求,开始推送 binary log 给 slave (即 canal )
  • canal 解析 binary log 对象(原始为 byte 流)

image.pngCanal安装

参考文档:https://github.com/alibaba/canal/wiki/QuickStart

Canal配置

mq相关参数说明 (>=1.1.5版本)

在1.1.5版本开始,引入了MQ Connector设计,参数配置做了部分调整

参数名

参数说明

默认值

canal.aliyun.accessKey

阿里云ak

canal.aliyun.secretKey

阿里云sk

canal.aliyun.uid

阿里云uid

canal.mq.flatMessage

是否为json格式 如果设置为false,对应MQ收到的消息为protobuf格式 需要通过CanalMessageDeserializer进行解码

false

canal.mq.canalBatchSize

获取canal数据的批次大小

50

canal.mq.canalGetTimeout

获取canal数据的超时时间

100

canal.mq.accessChannel = local

是否为阿里云模式,可选值local/cloud

local

canal.mq.database.hash

是否开启database混淆hash,确保不同库的数据可以均匀分散,如果关闭可以确保只按照业务字段做MQ分区计算

true

canal.mq.send.thread.size

MQ消息发送并行度

30

canal.mq.build.thread.size

MQ消息构建并行度

8

kafka.bootstrap.servers

kafka服务端地址

127.0.0.1:9092

kafka.acks

kafka为ProducerConfig.ACKS_CONFIG

all

kafka.compression.type

压缩类型

none

kafka.batch.size

kafka为ProducerConfig.BATCH_SIZE_CONFIG

16384

kafka.linger.ms

kafka为ProducerConfig.LINGER_MS_CONFIG , 如果是flatMessage格式建议将该值调大, 如: 200

1

kafka.max.request.size

kafka为ProducerConfig.MAX_REQUEST_SIZE_CONFIG

1048576

kafka.buffer.memory

kafka为ProducerConfig.BUFFER_MEMORY_CONFIG

33554432

kafka.max.in.flight.requests.per.connection

kafka为ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION

1

kafka.retries

发送失败重试次数

0

kafka.kerberos.enable

kerberos认证

false

kafka.kerberos.krb5.file

kerberos认证

../conf/kerberos/krb5.conf

kafka.kerberos.jaas.file

kerberos认证

../conf/kerberos/jaas.conf

rocketmq.producer.group

rocketMQ为ProducerGroup名

test

rocketmq.enable.message.trace

是否开启message trace

false

rocketmq.customized.trace.topic

message trace的topic

rocketmq.namespace

rocketmq的namespace

rocketmq.namesrv.addr

rocketmq的namesrv地址

127.0.0.1:9876

rocketmq.retry.times.when.send.failed

重试次数

0

rocketmq.vip.channel.enabled

rocketmq是否开启vip channel

false

rocketmq.tag

rocketmq的tag配置

空值

rabbitmq.host

rabbitMQ配置

rabbitmq.virtual.host

rabbitMQ配置

rabbitmq.exchange

rabbitMQ配置

rabbitmq.username

rabbitMQ配置

rabbitmq.password

rabbitMQ配置

rabbitmq.deliveryMode

rabbitMQ配置

pulsarmq.serverUrl

pulsarmq配置

pulsarmq.roleToken

pulsarmq配置

pulsarmq.topicTenantPrefix

pulsarmq配置

canal.mq.topic

mq里的topic名

canal.mq.dynamicTopic

mq里的动态topic规则, 1.1.3版本支持

canal.mq.partition

单队列模式的分区下标,

1

canal.mq.enableDynamicQueuePartition

动态获取MQ服务端的分区数,如果设置为true之后会自动根据topic获取分区数替换canal.mq.partitionsNum的定义,目前主要适用于RocketMQ

false

canal.mq.partitionsNum

散列模式的分区数

canal.mq.dynamicTopicPartitionNum

mq里的动态队列分区数,比如针对不同topic配置不同partitionsNum

canal.mq.partitionHash

散列规则定义 库名.表名 : 唯一主键,比如mytest.person: id 1.1.3版本支持新语法,见下文

canal.mq.dynamicTopic 表达式说明

canal 1.1.3版本之后, 支持配置格式:schema 或 schema.table,多个配置之间使用逗号或分号分隔

  • 例子1:test\\.test 指定匹配的单表,发送到以test_test为名字的topic上
  • 例子2:.*\\..* 匹配所有表,则每个表都会发送到各自表名的topic上
  • 例子3:test 指定匹配对应的库,一个库的所有表都会发送到库名的topic上
  • 例子4:test\\..* 指定匹配的表达式,针对匹配的表会发送到各自表名的topic上
  • 例子5:test,test1\\.test1,指定多个表达式,会将test库的表都发送到test的topic上,test1\\.test1的表发送到对应的test1_test1 topic上,其余的表发送到默认的canal.mq.topic值

为满足更大的灵活性,允许对匹配条件的规则指定发送的topic名字,配置格式:topicName:schema 或 topicName:schema.table

  • 例子1: test:test\\.test 指定匹配的单表,发送到以test为名字的topic上
  • 例子2: test:.*\\..* 匹配所有表,因为有指定topic,则每个表都会发送到test的topic下
  • 例子3: test:test 指定匹配对应的库,一个库的所有表都会发送到test的topic下
  • 例子4:testA:test\\..* 指定匹配的表达式,针对匹配的表会发送到testA的topic下
  • 例子5:test0:test,test1:test1\\.test1,指定多个表达式,会将test库的表都发送到test0的topic下,test1\\.test1的表发送到对应的test1的topic下,其余的表发送到默认的canal.mq.topic值

大家可以结合自己的业务需求,设置匹配规则,建议MQ开启自动创建topic的能力

canal.mq.partitionHash 表达式说明

canal 1.1.3版本之后, 支持配置格式:schema.table:pk1^pk2,多个配置之间使用逗号分隔

  • 例子1:test\\.test:pk1^pk2 指定匹配的单表,对应的hash字段为pk1 + pk2
  • 例子2:.*\\..*:id 正则匹配,指定所有正则匹配的表对应的hash字段为id
  • 例子3:.*\\..*:$pk$ 正则匹配,指定所有正则匹配的表对应的hash字段为表主键(自动查找)
  • 例子4: 匹配规则啥都不写,则默认发到0这个partition上
  • 例子5:.*\\..* ,不指定pk信息的正则匹配,将所有正则匹配的表,对应的hash字段为表名
    • 按表hash: 一张表的所有数据可以发到同一个分区,不同表之间会做散列 (会有热点表分区过大问题)

  • 例子6: test\\.test:id,.\\..* , 针对test的表按照id散列,其余的表按照table散列

注意:大家可以结合自己的业务需求,设置匹配规则,多条匹配规则之间是按照顺序进行匹配(命中一条规则就返回)

其他详细参数可参考Canal AdminGuide

mq顺序性问题

binlog本身是有序的,写入到mq之后如何保障顺序是很多人会比较关注,在issue里也有非常多人咨询了类似的问题,这里做一个统一的解答

  1. 1.

    canal目前选择支持的kafka/rocketmq,本质上都是基于本地文件的方式来支持了分区级的顺序消息的能力,也就是binlog写入mq是可以有一些顺序性保障,这个取决于用户的一些参数选择

  2. 2.

    canal支持MQ数据的几种路由方式:单topic单分区,单topic多分区、多topic单分区、多topic多分区

  • canal.mq.dynamicTopic,主要控制是否是单topic还是多topic,针对命中条件的表可以发到表名对应的topic、库名对应的topic、默认topic name
  • canal.mq.partitionsNum、canal.mq.partitionHash,主要控制是否多分区以及分区的partition的路由计算,针对命中条件的可以做到按表级做分区、pk级做分区等
  1. 1.

    canal的消费顺序性,主要取决于描述2中的路由选择,举例说明:

  • 单topic单分区,可以严格保证和binlog一样的顺序性,缺点就是性能比较慢,单分区的性能写入大概在2~3k的TPS
  • 多topic单分区,可以保证表级别的顺序性,一张表或者一个库的所有数据都写入到一个topic的单分区中,可以保证有序性,针对热点表也存在写入分区的性能问题
  • 单topic、多topic的多分区,如果用户选择的是指定table的方式,那和第二部分一样,保障的是表级别的顺序性(存在热点表写入分区的性能问题),如果用户选择的是指定pk hash的方式,那只能保障的是一个pk的多次binlog顺序性 ** pk hash的方式需要业务权衡,这里性能会最好,但如果业务上有pk变更或者对多pk数据有顺序性依赖,就会产生业务处理错乱的情况. 如果有pk变更,pk变更前和变更后的值会落在不同的分区里,业务消费就会有先后顺序的问题,需要注意

性能表现

Kafka + 混合DML场景测试

场景

1个topic + 单分区

1个topic+3分区

2个topic+1分区

2个topic+3分区

不开启flatMessage

29.6k rps (9.71k tps)

17.54k rps (6.53k tps)

21.6k rps (7.9k tps)

16.8k rps (5.71k tps)

开启flatMessage

11.79k rps (4.36k tps)

15.97 rps (5.94k tps)

11.91k rps (4.45k tps)

16.96k rps (6.26k tps)

Kafka + 单表的batch insert场景测试

场景

1个topic + 单分区

1个topic+3分区

不开启flatMessage

59.6k rps

45.1k rps

开启flatMessage

51.3k rps

49.6k rps


RocketMQ + 混合DML场景测试

场景

1个topic + 单分区

1个topic+3分区

2个topic+1分区

2个topic+3分区

不开启flatMessage

29.6k rps (10.71k tps)

23.3k rps (8.59k tps)

26.7k rps (9.46k tps)

21.7k rps (7.66k tps)

开启flatMessage

16.75k rps (6.17k tps)

14.96k rps (5.55k tps)

17.83k rps (6.63k tps)

16.93k rps (6.26k tps)

RocketMQ + 单表的batch insert场景测试

场景

1个topic + 单分区

1个topic+3分区

不开启flatMessage

81.2k rps

51.3k rps

开启flatMessage

62.6k rps

57.9k rps

附录:

canal官方文档:https://github.com/alibaba/canal/wiki/Canal-Kafka-RocketMQ-QuickStart

Canal+MQ性能表现:https://github.com/alibaba/canal/wiki/Canal-MQ-Performance

参考文档:https://www.cnblogs.com/zwh0910/p/17043265.html

相关文章:

Canal+Kafka实现Mysql数据同步

Canal介绍 canal [kənl],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费 canal可以用来监控数据库数据的变化,从而获得新增数据,或者修改的数据。 canal是应阿里巴巴存在杭…...

K8s部署

K8s部署 一、实验架构 二进制搭建 Kubernetes v1.20 -单master节点部署k8s集群master01:192.168.111.10 kube-apiserver kube-controller-manager kube-scheduler etcd k8s集群master02:192.168.111.20k8s集群node01:192.168.111.20 kubele…...

MongoDB 分片集群

在了解分片集群之前,务必要先了解复制集技术! 1.1 MongoDB复制集简介 一组Mongodb复制集,就是一组mongod进程,这些进程维护同一个数据集合。复制集提供了数据冗余和高等级的可靠性,这是生产部署的基础。 1.1.1 复制集…...

CSDN 编程竞赛六十九期题解

竞赛总览 CSDN 编程竞赛六十九期:比赛详情 (csdn.net) 竞赛题解 题目1、S数 如果一个正整数自身是回文数,而且它也是一个回文数的平方,那么我们称这个数为S数。现在,给定两个正整数L、R,返回包含在范围 [L, R] 中S…...

vue3组合式api单文件组件写法

一&#xff0c;模板部分 <template><div class"device container"><breadcrumb :list"[首页, 应急处置]" /><div class"search_box"><div class"left"><span style"margin-right: 15px"…...

Unity游戏源码分享-多角色fps射击游戏

Unity游戏源码分享-多角色fps射击游戏 项目地址&#xff1a;https://download.csdn.net/download/Highning0007/88204023...

在Cesium中给管道添加水流效果

添加效果前后对比&#xff1a; 关键代码&#xff1a; /*** 水流粒子&#xff0c;目前支持向上或者向下的效果* param {Number} x* param {Number} y* param {Number} z* param {Number} options* example* options {* color: Cesium.Color.AZURE,* emissionRate: 5, …...

测试平台——项目模块模型类设计

这里写目录标题 一、项目应用1、项目包含接口:2、创建子应用3、项目模块设计a、模型类设计b、序列化器类设计c、视图类设计d、项目的增删改查操作4、接口模块设计a、模型类设计b、序列化器类设计c、视图类设计d、接口的增删改查查操作5、环境模块设计a、模型类设计b、序列化器…...

【Android】MVC,MVP,MVVM三种架构模式的区别

MVC 传统的代码架构模式&#xff0c;仅仅是对代码进行了分层&#xff0c;其中的C代表Controller&#xff0c;控制的意思 将代码划分为数据层&#xff0c;视图层&#xff0c;控制层&#xff0c;三层之间可以任意交互 MVP MVP是在MVC基础上改进而来的一种架构&#xff0c;其中的…...

代码质量检查工具SonarQube

Devops流水线之SonarQube 文章目录 Devops流水线之SonarQube1. 软件功能介绍及用途2. 软件环境搭建与使用2.1 使用方法2.2 SonarQube相关属性说明2.3 Sonar配置文件内容说明 3. 使用环节4. 检查方法 1. 软件功能介绍及用途 SonarQube是一个用于代码质量管理的开源平台&#xf…...

开发命名规范

1项目命名规范 1、工程项目名&#xff0c;尽量想一些有意义、有传播价值的名称&#xff1b;比如星球、游戏、名人、名地名等&#xff1b;取名就跟给孩子取名一样&#xff0c;独特、有价值、有意义、好传播 2、所有的类都必须添加创建者和创建日期 3、所有代码&#xff1a;包括…...

12. Redis分布式高可用集群搭建

文章目录 Redis分布式高可用集群搭建一、redis集群有三种方式&#xff1a;1. 主从模式2. 哨兵3. 集群&#xff08;master-cluster&#xff09; 二、基于centos7操作系统操做1. 关闭防火墙&#xff0c;三台机器都执行2. hostname修改&#xff0c;三台机器都执行,这一步是为了在内…...

【微信小程序篇】-请求封装

最近自己在尝试使用AIGC写一个小程序&#xff0c;页面、样式、包括交互函数AIGC都能够帮我完成(不过这里有一点问题AIGC的上下文关联性还是有限制&#xff0c;会经常出现对于需求理解跑偏情况&#xff0c;需要不断的重复强调&#xff0c;并纠正错误&#xff0c;才能得到你想要的…...

区块链-Web3.0-什么是Web3.0?

一、什么是Web 3.0 Web 3.0&#xff0c;也被称为“去中心化Web”或“智能Web”&#xff0c;是互联网的下一代&#xff0c;它使用了分布式系统技术、区块链技术和智能合约等新型技术&#xff0c;旨在构建一个更加去中心化、安全、透明和智能的互联网。Web 3.0 可以带来更广泛的…...

动手学深度学习(三)线性神经网络—softmax回归

分类任务是对离散变量预测&#xff0c;通过比较分类的概率来判断预测的结果。 softmax回归和线性回归一样也是将输入特征与权重做线性叠加&#xff0c;但是softmax回归的输出值个数等于标签中的类别数&#xff0c;这样就可以用于预测分类问题。 分类问题和线性回归的区别&#…...

ios swift alert 自定义弹框 点击半透明部分弹框消失

文章目录 1.BaseAlertVC2.BindFrameNumAlertVC 1.BaseAlertVC import UIKitclass BaseAlertVC: GLBaseViewController {let centerView UIView()override func viewDidLoad() {super.viewDidLoad()view.backgroundColor UIColor(displayP3Red: 0, green: 0, blue: 0, alpha:…...

HCIP STP(生成树)

目录 一、STP概述 二、生成树协议原理 三、802.1D生成树 四、STP的配置BPDU 1、配置BPDU的报文格式 2、配置BPDU的工作过程 3、TCN BPDU 4、TCN BPDU的工作过程 五、STP角色选举 1、根网桥选举 2、根端口选举 3、指定端口选举 4、非指定端口选举 六、STP的接口状…...

【Unity开发必备】100多个 Unity 学习网址 资源 收藏整理大全【持续更新】

Unity 相关网站整理大全 众所周知&#xff0c;工欲善其事必先利其器&#xff0c;有一个好的工具可以让我们事半功倍&#xff0c;有一个好用的网站更是如此&#xff01; 但是好用的网站真的太多了&#xff0c;收藏夹都满满的(但是几乎没打开用过&#x1f601;)。 所以本文是对…...

Alpine Ridge控制器使其具备多种使用模式 - 英特尔发布雷电3接口:竟和USB Type-C统一了

同时又因为这建立在Type-C的基础上&#xff0c;雷电3也将利用现有的标准Type-C线缆引入有源支持。当使用Type-C的线缆时&#xff0c;雷电的速度就降到了20Gbps全双工——这与普通的Type-C的带宽相同——这是为了成本牺牲了一些带宽。可以比较一下&#xff0c;Type-C线的成本只有…...

容器——2.Collection 子接口之 List

文章目录 2.1. Arraylist 和 Vector 的区别?2.2. Arraylist 与 LinkedList 区别?2.2.1. 补充内容:双向链表和双向循环链表2.2.2. 补充内容:RandomAccess 接口 2.3 ArrayList 的扩容机制 2.1. Arraylist 和 Vector 的区别? ArrayList 是 List 的主要实现类&#xff0c;底层使…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...