leetcode357- 2812. 找出最安全路径
这个题比较经典,可以用多个算法来求解,分别给出各个算法的求解方法,主要是分为第一部分的多源BFS求每个位置的距离和第二部分求(0,0)到(n-1,n-1)的最短路径(可以用多种方法求)
目录
- 多源BFS
- 求最短路径
- 枚举安全系数判断是否可行
- 枚举安全系数
- 路径是否存在
多源BFS
首先是要求得每个点距离最近的小偷所在位置的距离长度:
暴力枚举每个小偷所在位置,更新所有点到该小偷位置的距离,数据量为400,假设每个位置都有小偷,小偷数量达到400*400,再加上枚举每个位置,最后的复杂度为O(400 * 400 * 400 * 400),即O(n^4)会超时;
多源BFS求距离:多源BFS
// 以所有小偷为起点进行多源 bfsmemset(dis, -1, sizeof(dis));for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) if (grid[i][j] == 1) {q.push(pii(i, j));dis[i][j] = 0;}while (!q.empty()) {pii p = q.front(); q.pop();int i = p.first, j = p.second;for (int k = 0; k < 4; k++) {int ii = i + dir[k][0], jj = j + dir[k][1];if (ii < 0 || jj < 0 || ii >= n || jj >= m || dis[ii][jj] >= 0) continue;q.push(pii(ii, jj));dis[ii][jj] = dis[i][j] + 1;}}
求最短路径
枚举安全系数判断是否可行
枚举答案看是否存在满足答案的路径。
这个思路采用逆向思维方式,不是枚举最短路径判断安全系数,而是枚举安全系数判断对应的最短路径是否存在,也是分为两部分,一部分是如何枚举安全系数,另一部分是如何判断只经过安全系数为lim并且连通起点到终点的路径是否存在。
枚举路径中安全系数(经过的格子的最小值)可以是哪些,相当于枚举只经过安全系数为lim的路径,路径中经过的格子安全系数全都大于等于lim,能否从起点到达终点;然后让这个lim尽可能地大。
枚举安全系数
- 可以直接从最大的开始枚举,找到一个符合条件的就可以结束了,O(n)
//直接从大到小枚举for(int i=min(dis[0][0],dis[n-1][m-1]);i>=0;i--){if(check(i)) return i;}
- 二分枚举, O(logn) 【最小值最大或者是最大值最小问题】
//二分int l=0,r=min(dis[0][0],dis[n-1][m-1]);while(l<r){int mid=(l+r+1)>>1;if(check(mid)) l=mid;else r=mid-1;}
路径是否存在
判断路径上的安全系数为lim,也就是之前求出来的所有节点的值大于等于lim的连接起点到终点的路径是否存在,有多种方法,bfs,dfs,并查集,只要判断起点和终点连通就行。
- BFS
bfs检查时间,每个位置处遍历一次,复杂度为O(n^2)
//通过一次bfs,检查能否只经过安全系数大于等于lim的格子,从左上角走到右下角bool check(int lim){q.push({0,0});memset(visited, 0, sizeof(visited));visited[0][0]=true;while(!q.empty()){pii p = q.front(); q.pop();int i = p.first, j = p.second;for (int k = 0; k < 4; k++) {int ii = i + dir[k][0], jj = j + dir[k][1];if (ii < 0 || jj < 0 || ii >= n || jj >= m || dis[ii][jj]<lim ||visited[ii][jj]) continue;q.push(pii(ii, jj));visited[ii][jj]=true;}}return visited[n-1][n-1];}
-
DFS
深搜不行,因为涉及到回溯,导致每个节点可能访问多次,导致深搜的时间复杂度无法控制在O(n^2)内,会超时。 -
并查集判断(0,0)和(n-1,n-1)是否连通
int find(int x){if(p[x]==x) return x;return p[x]=find(p[x]);}//并差集判断bool check(int lim){//初始化并查集每个元素是自己,将二维的数组拉成一维的int x=0;for(int i=0;i<n;i++){for(int j=0;j<m;j++){p[x]=x;x++; }}//将每个节点与周围节点合并for(int i=0;i<n;i++){for(int j=0;j<m;j++){if(dis[i][j]<lim) continue;int a=find(i*n+j);for (int k = 0; k < 4; k++) {int ii = i + dir[k][0], jj = j + dir[k][1];if (ii < 0 || jj < 0 || ii >= n || jj >= m || dis[ii][jj]<lim ) continue;int b =find(ii*n+jj);if(a!=b) p[b]=a; //合并}}}return find(0)==find(n*n-1) ;}
相关文章:
leetcode357- 2812. 找出最安全路径
这个题比较经典,可以用多个算法来求解,分别给出各个算法的求解方法,主要是分为第一部分的多源BFS求每个位置的距离和第二部分求(0,0)到(n-1,n-1)的最短路径(可以用多种方法求) 目录 多源BFS求最短路径枚举安全系数判断…...

Oracle连接数据库提示 ORA-12638:身份证明检索失败
ORA-12638 是一个 Oracle 数据库的错误代码,它表示身份验证(认证)检索失败。这通常与数据库连接相关,可能由于以下几个原因之一引起: 错误的用户名或密码: 提供的数据库用户名或密码不正确,导致…...
在 Linux 中使用 systemd 注册服务
Systemd 是一种现代的 Linux 系统初始化系统和服务管理器。它旨在管理系统服务的初始化、配置和控制。Systemd 的一个关键特性是它可以管理服务,这些服务是为系统提供特定功能的后台进程。在本指南中,我们将探讨如何使用 systemd 在 Linux 中注册服务。 …...

(03)Unity HTC VRTK 基于 URP 开发记录
1.简介 本篇主要内容为:URP如何与VRTK结合、URP需要注意的地方、VRTK的功能进行阐述。 因项目本身要求要渲染出比较好的画质,所以抛弃了Unity默认渲染管线Built-in,使用URP进行渲染,当然也可以选HDRP,但考虑到后期项目…...

.bit域名调研
.bit域名研究 问题: .bit域名和ENS域名的相同点?不同点?有什么关系? .bit的定义 .bit 是基于区块链的,开源的,跨链去中心化账户系统.bit 提供了以 .bit 为后缀的全局唯一的命名体系,可用于加密…...

Vue数组变更方法和替换方法
一、可以引起UI界面变化 Vue 将被侦听的数组的变更方法进行了包裹,所以它们也将会触发视图更新。这些被包裹过的方法包括: push()pop()shift()unshift()splice()sort()reverse() 以上七个数组都会改变原数组,下面来分别讲解它们的区别&…...
Centos-6.3安装使用MongoDB
安装说明 系统环境:Centos-6.3 安装软件:mongodb-linux-x86_64-2.2.2.tgz 下载地址:http://www.mongodb.org/downloads 安装机器:192.168.15.237 上传位置:/usr/local/ 软件安装位置:/usr/local/mongodb 数…...

Mysql 复杂查询丨联表查询
💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! JOIN(联表查询) 联表查询(Join)是一种在数据库中使用多个表进行关联查询的操作。它通过使用 JOIN 关键字将多个表连接在…...

C语言进阶第二课-----------指针的进阶----------升级版
作者前言 🎂 ✨✨✨✨✨✨🍧🍧🍧🍧🍧🍧🍧🎂 🎂 作者介绍: 🎂🎂 🎂 🎉🎉🎉…...

若依vue -【 111 ~ 更 ~ 127 完 】
【更】111 3.5.0版本更新介绍 112 使用docker实现一键部署 1、安装docker yum install https://download.docker.com/linux/fedora/30/x86_64/stable/Packages/containerd.io-1.2.6-3.3.fc30.x86_64.rpm yum install -y yum-utils device-mapper-persistent-data lvm2 yum-c…...

vue-pc端实现按钮防抖处理-自定义指令
前言 我们经常在移动端会处理按钮和输入框的防抖和节流处理,在pc端很少进行这样的操作 但是在pc端也是可以进行按钮的防抖操作,这样也是比较合理,可以不用但不可以不会 我们只要配合vue项目自定义指令加上全局注册,就可以实现按…...
python解决8皇后问题
def is_valid(queens, row, col):for i in range(row):if queens[i] == col or abs(queens[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(n, row, queens, result):if row == n:result.append(queens[:]) # 将当前解添加到结果中returnfor col in ra…...

xcode打包导出ipa
转载:xcode打包导出ipa 目录 转载:xcode打包导出ipa 第一步:注册苹果开发者账号 第二步:下载APP Uploader 第三步:使用xcode打包导出ipa文件,供其他人内测 众所周知,在开发苹果应用时需要使…...
更优雅地调试SwiftUI—借助LLDB
更优雅地调试SwiftUI—借助LLDB 概述 你是否写过这样的代码: struct ContentView: View {@State private var mySize: CGFloat = 15.0var myString: String = "Hi LLDB"var myArray: [Int] = [1, 2, 3]var body: some View {VStack {Text("Hello World"…...

2.4 网络安全新技术
数据参考:CISP官方 目录 云计算安全大数据安全移动互联网安全物联网安全工业互联网安全 一、云计算安全 1、云计算定义 云计算是指通过网络访问可扩展的、灵活的物理或虚拟共享资源池,并按需自助获取和管理资源的模式。在云计算中,计算资…...
人生天地之间,若白驹之过隙,忽然而已
人生天地之间,若白驹之过隙,忽然而已 这段时间有个同事离职了,其实身边不断有老人走、有新人来,但这回走的同事和别的有些不同,当时我入职面试的时候就是他面试的我,工作中有啥问题都会请教他,…...

MySQL — MVCC
文章目录 MVCCMVCC 实现原理隐藏字段undo logundo log的用途undo log类型 版本链ReadView MVCC InnoDB是一个多版本的存储引擎。它保留有关已更改行的旧版本的信息,以支持并发和回滚等事务性特性。这些信息存储在undo表空间中的数据结构称为回滚段。InnoDB使用回滚…...

Android模板设计模式之 - 构建整个应用的BaseActivity
1. 模式介绍 模式的定义 定义一个操作中的算法的框架,而将一些步骤延迟到子类中。使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。 模式的使用场景 1.多个子类有公有的方法,并且逻辑基本相同时。 2.重要、复杂的算法,可…...
浏览器缓存技术--localStorage和sessionStorage原理与使用
localStorage和sessionStorage LocalStorageLocalStorage的特点存入/读取数据使用场景 sessionStoragesessionStorage的特点存入/读取数据使用场景sessionStorage 、localStorage 和 cookie 之间的区别 测试localStorage和sessionStorageIndexedDB LocalStorage 为了弥补 Cook…...

无涯教程-Perl - endservent函数
描述 此功能告诉系统您不再期望使用getservent从服务文件中读取条目。 语法 以下是此函数的简单语法- endservent返回值 此函数不返回任何值。 例 以下是显示其基本用法的示例代码- #!/usr/bin/perlwhile(($name, $aliases, $port_number,$protocol_name)getservent())…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...

C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...

计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...