Nim游戏:取石头
(一)一堆取石头
背景:
在博弈论中,有一种称为Nim游戏的经典问题,它涉及到取石子的问题,其中有许多变种。Nim游戏是一种零和博弈,即两名玩家交替行动,每次只能从一堆物品中取走一定数量的物品,无法分割物品。
题目中描述的场景是这样的:
有n个石头,两名玩家轮流进行操作,每次可以从石头堆中取走1到m个石头(其中m是一个固定的正整数)。玩家可以根据自己的策略选择取多少个石头,目标是使自己取得最后一个石头。
题解思路:
令 ans = n%(m+1)(为什么这样令,后面会讲解)
判断是否存在先手必胜策略这一问题,即可一开始检验石子堆中的ans是否为0,当ans为0时,你面对的是ans==0的局面,你的任意操作都会使得当前ans不为0,你的对手又足够聪明,那你每执行一步,他都会再次把ans==0的局面返还给你,那你最后必输;
当ans不为0时,你先手,你又足够聪明,你每次执行后都可以把ans==0的局面留给对手,最后你必胜。
-
为什么令 ans = n%(m+1)?
当先手玩家取石头使石头个数 n 能够被(m+1)整除时,后手玩家所要面临的情况是:无论怎么取都不可能取完石头。如果先手玩家能够保证后手玩家一直面临石头个数 n 能够被(m+1)整除,那么最后一次,后手玩家面临的情况是:石头的个数是 m+1,所以后手玩家无论怎么取都不可能取完石头,最后只能是先手玩家将石头取完。
所以对于自己来说,取胜的条件是:自己面临的石头个数情况是 n%(m+1)!= 0;然后自己取石头使石头个数能够被(m+1)整数。
(二)多堆取石头:
这里我转载一位大佬的博客:博弈论石子游戏——nim 游戏_[模板]nim游戏_Wu_L7的博客-CSDN博客
题目描述:
地上有 n 堆石子(每堆石子数量小于 10^4),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取完,不能不取。每次只能从一堆里取。最后没石子可取的人就输了。假如甲是先手,且告诉你这 n 堆石子的数量,他想知道是否存在先手必胜的策略。
题目思路:
必胜策略,即当你执行最后一步后,你的对手已无石子可取,他必败你必胜。最后局面是地上各个石子堆已无石子可取,假设 ai 代表第 i 个石子堆中的石子数,则 ai = 0(i ≤ n)。即可得,a1^a2^a3^……^an=0(^表示异或),令ans = a1^a2^a3^……^an,要想必胜,说明最后的局面一定是ans==0,那我只需要满足,我每次操作完使得ans==0即可,那么每次留给对手的局面都是ans==0(怎么实现后面讲),并且石子的初始数确定,每次都取走一部分的石子,在有限的步数内肯定会取完,当执行到最后一步ans==0时,恰好最后的石子被你取完,你必胜。
那么,判断是否存在先手必胜策略这一问题,即可一开始检验石子堆中的ans是否为0,当ans为0时,你面对的是ans==0的局面,你的任意操作都会使得当前ans不为0,你的对手又足够聪明,那你每执行一步,他都会再次把ans==0的局面返还给你,那你最后必输;当ans不为0时,你先手,你又足够聪明,你每次执行后都可以把ans==0的局面留给对手,最后你必胜。
小tip:
为什么每次操作之后都会使得ans==0转化成ans != 0,并且足够聪明的你执行完一次操作之后又能把ans != 0变成ans==0?
1、ans==0执行一次操作之后为什么会转化为ans != 0?
异或,即是把每个ai中转化为二进制的形式,再对每一个位置的所有0和1进行异或操作,举个例子:5^3=6(0101^0011=0110)。而ans = a1^a2^a3^……^an,每次只能对一个石子堆操作,即每次操作只会影响ai(i ≤ n)中的一个,假设是对ak进行操作,则(没操作前的ak)^(其它ai的异或)==0,说明(其它ai的异或)==(没操作前的ak)(因为两个相同的数相异或结果才为0),现在对ak进行操作,则ak的值肯定会变化,其二进制形式也随之变化,则(操作后的ak)!=(其它ai的异或),所以(操作后的ak)^(其它ai的异或)!= 0,则ans != 0。
2、为什么足够聪明的你执行完一次操作之后又能把ans != 0变成ans==0?
ans = a1^a2^a3^……^an,是各个位置多个0和1的异或,因为ans != 0,说明一定有个别位置中1的个数为奇数,则我们可以把该位置上的1去掉一个或增加一个,即取走一些石头,使之为偶数,则ans==0。例如:10^5=15(1010^0101=1111),这是最经典的了,我们可以从10中拿走5,则5^5=0,所以想说明的是,总有办法使ans==0。
注:
这里有个简单的取石头个数的技巧(异或的简单计算方法):
例如:7和14的异或
7的二进制序列为: 0111
14的二进制序列为:1110
则异或结果是:1001 == 9
简便计算:
7可以写成2的倍数之和:4+2+1
14可以写成2的倍数之和:8+4+2+0
然后约去两部分相同的部分:7剩余一个1;14剩余一个8,再将剩余的数相加,其结果就是异或结果9。
本次内容到此结束了!如果你觉得这篇博客对你有帮助的话 ,希望你能够给我点个赞,鼓励一下我。感谢感谢……
参考资料:
【尼姆游戏(学霸就是这样欺负人的)】https://www.bilibili.com/video/BV1ek4y1q7JD?vd_source=564abed1c36a31978eb9de7cdc6668d2
博客原文链接:https://blog.csdn.net/Wu_L7/article/details/126266519
同时感谢上面两位创作者的输出,让我受益匪浅。
相关文章:
Nim游戏:取石头
(一)一堆取石头 背景: 在博弈论中,有一种称为Nim游戏的经典问题,它涉及到取石子的问题,其中有许多变种。Nim游戏是一种零和博弈,即两名玩家交替行动,每次只能从一堆物品中取走一定数…...

springboot国际化
springboot国际化 不需要引入额外的jar包 参考:https://zhuanlan.zhihu.com/p/551605839 1.rources要创建Resource Bundle 2.yml配置中引入Resource Bundle 引入Resource Bundle spring:messages:encoding: UTF-8basename: i18n/messages_common3.创建国际化工具…...
12种不宜使用的Javascript语法
1. Javascript有两组相等运算符,一组是和!,另一组是和!。前者只比较值的相等,后者除了值以外,还比较类型是否相同。 请尽量不要使用前一组,永远只使用和!。因为默认会进行类型转换,规则十分难记。如果你…...

vue3+element-plus点击列表中的图片预览时,图片被表格覆盖
文章目录 问题解决 问题 视觉 点击图片进行预览,但还能继续选中其他的图片进行预览,鼠标放在表格上,那一行表格也会选中,如图所示第一行的效果。 代码 <el-table-column prop"id" label"ID" width"…...

flutter:二维码生成与读取
前言 这csdn真的是服了,图片里有个二维码就直接变成违规图片了。至于效果的话,自己运行一下看看吧。 生成 flutter中生成二维码可以使用 qr_flutter。 官方文档 https://pub-web.flutter-io.cn/packages/qr_flutter 安装 flutter pub add qr_flutt…...
Camunda 7.x 系列【14】核心概念
有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 2.7.9 本系列Camunda 版本 7.19.0 源码地址:https://gitee.com/pearl-organization/camunda-study-demo 文章目录 1. 流程定义1.1 Key1.2 版本1.3 挂起2. 流程实例3. 执行4. 活动实例5. 作业和作业定义本篇文…...

matplotlib 笔记:hist2d 2D直方图
创建二维直方图,用于显示数据分布的图表将数据划分成不同的区间(bin),并统计每个区间内数据点的数量 1 基本画法 默认bin的数量是10*10 N 1000 x np.random.randn(N) y np.random.randn(N) plt.hist2d(x, y) 2 修改bin的…...

数据库优化脚本执行报错
目录 一、执行数据库优化脚本 报错... 3 解决方法:... 4 1、直接注释掉RECYCLE_POOLS 赋值sql语句块... 4 2、手动修改脚本... 5 附录... 6 一、执行数据库优化脚本 报错 AutoParaAdj3.5_dm8.sql 1)manager中报错 -20001: 执行失败, -7065 数据未…...
TopN漏洞--sql注入
sql注入 SQL注入即是指web应用程序对用户输入数据的合法性没有判断或过滤不严,攻击者可以在web应用程序中事先定义好的查询语句的结尾上添加额外的SQL语句,在管理员不知情的情况下实现非法操作,以此来实现欺骗数据库服务器执行非授权的任意查…...

【论文阅读】UNICORN:基于运行时来源的高级持续威胁检测器(NDSS-2020)
UNICORN: Runtime Provenance-Based Detector for Advanced Persistent Threats NDSS-2020 哈佛大学 Han X, Pasquier T, Bates A, et al. Unicorn: Runtime provenance-based detector for advanced persistent threats[J]. arXiv preprint arXiv:2001.01525, 2020. 源码&…...
Linux的基本介绍和常用命令
Linux和Windows的主要区别 Linux和Windows是两种具有不同特性的操作系统,它们具有各自的优点和适用场景。选择哪一个操作系统主要取决于用户的需求、技术背景及使用场景等。 Linux和Windows的主要区别如下: 开源VS闭源:Linux是开源的系统&…...
Flutter 中
在Get状态管理库中,GetxController是一个用于管理状态和逻辑的基类。它具有一系列的生命周期方法,用于在不同的阶段执行相关的操作。下面是GetxController的生命周期方法及其执行顺序: onInit(): 这个方法在GetxController创建并加入到管理器…...

可视化高级绘图技巧100篇-总论
前言 优秀的数据可视化作品可以用三个关键词概括:准确、清晰、优雅。 准确:精准地反馈数据的特征信息(既不遗漏也不冗余,不造成读者疏漏&误读细节) 清晰:获取图表特征信息的时间越短越好 优雅&…...

Android AOSP源码编译——AOSP下载(一)
一、电脑配置 Ubuntu16.04 16G,硬盘的大小最好大于300G (我这边是找了个win电脑装了双系统 没有使用虚拟机的方式) 二、基础环境配置 1、安装git sudo apt install git配置git email和name git config --global user.email "youexample.com" git conf…...

Qt 文件对话框使用 Deepin风格
当你在Deepin或UOS 上开发 Qt 程序时,如果涉及到文件对话框功能,那么就会遇到调用原生窗口的问题。 如果你使用的是官方的Qt版本,那么在Deepin或者UOS系统上,弹出的文件对话框会是如下这样: 而Deepin或UOS系统提供的默…...
.net core 配置swagger
要在 ASP.NET Core 中配置 Swagger,您需要遵循以下步骤: 添加 Swagger NuGet 包:将 Swashbuckle.AspNetCore NuGet 包添加到项目中。 在 Startup.cs 文件中进行配置: using Microsoft.OpenApi.Models;public class Startup {// 省…...
leetcode707. 设计链表(单链表+虚拟头指针+双指针遍历)
题目:leetcode707. 设计链表 描述: 你可以选择使用单链表或者双链表,设计并实现自己的链表。 单链表中的节点应该具备两个属性:val 和 next 。val 是当前节点的值,next 是指向下一个节点的指针/引用。 如果是双向链…...

电脑麦克风没声音?
这3招就可以解决! 在我们使用电脑录制视频时,有时会遇到一个令人头疼的问题:麦克风没有声音。那么,为什么会出现这种情况呢?更重要的是,我们应该如何解决这个问题呢?本文将介绍3种方法…...

React Native元素旋转一定的角度
mMeArrowIcon: {fontSize: 30, color: #999, transform: [{rotate: 180deg}]},<Icon name"arrow" style{styles.mMeArrowIcon}></Icon>参考链接: https://reactnative.cn/docs/transforms https://chat.xutongbao.top/...
LeetCode 1749. 任意子数组和的绝对值的最大值
【LetMeFly】1749.任意子数组和的绝对值的最大值 力扣题目链接:https://leetcode.cn/problems/maximum-absolute-sum-of-any-subarray/ 给你一个整数数组 nums 。一个子数组 [numsl, numsl1, ..., numsr-1, numsr] 的 和的绝对值 为 abs(numsl numsl1 ... nums…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

【C++】纯虚函数类外可以写实现吗?
1. 答案 先说答案,可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...
MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释
以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块࿰…...