当前位置: 首页 > news >正文

【密码学】穴居人密码

穴居人密码


文字记载中,有时会把来自古希腊文化之前的各种记录作为密码学的例子,但称它们为密码学一定太不严格了,这是因为那些方法都太原始了。密码学的起源能追溯到多早,取决于你把密码学的相关定义确定得有多宽泛。大多数作者都认为亨利·E·兰根在他的《密码分析—密码学教程》(Cryptanalytics—A Course in Cryptography)中,把密码学起源确定得太早:

早期的史前穴居人可能通过口中发出的声音,或象形标识,形成了一套彼此之间传递消息的系统。

我们更乐意从古代苏美尔的“密码学原型”的例子讲起。苏美尔人信奉很多神,但是只有12个神是“大圈(GreatCircle)”的一部分,其中包括六男六女。

男性 女性

60-Anu 55-Antu

50-Enlil 45-Ninlil

40-Ea/Enki 35-Ninki

30-Nanna/Sin 25-Ningal

20-Utu/Shamash 15-Inanna/Ishtar

10-Ishkur/Adad 5-Ninhursag

每位神对应的编号有时可以代替这位神的名字!,这样我们就得到了一套代换密码。一般来说,尽管在引言中解释过了,当整个单词或名字被更换为数字或字母时,就将其称之为编码而不是密码。

好像每一种发展了书写的文化在此之后不久就孕育出了密码(如果大部分人是文盲,书写本身就提供了某种秘密性)。


参考文献:

1.《密码历史与传奇》 [美] 克雷格·鲍尔(Craig P.Bauer)人民邮电出版社 2019-4-1

相关文章:

【密码学】穴居人密码

穴居人密码 文字记载中,有时会把来自古希腊文化之前的各种记录作为密码学的例子,但称它们为密码学一定太不严格了,这是因为那些方法都太原始了。密码学的起源能追溯到多早,取决于你把密码学的相关定义确定得有多宽泛。大多数作者都…...

neo4j的CQL命令实例演示

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…...

vue3+ts使用antv/x6

使用 2.x 版本 x6.antv 新官网: 安装 npm install antv/x6 //"antv/x6": "^2.1.6",项目结构 1、初始化画布 index.vue <template><div id"container"></div> </template><script setup langts> import { onM…...

wsl1 ubuntu通过宿主机代理连接外网

文章目录 环境变量配置apt换源apt安装&#xff0c;测试是否能通外网可能出现的问题&#xff1a;Temporary failure resolving 参考 背景&#xff1a;公司电脑是局域网&#xff0c;通过走代理来连接外网 wsl1 ubuntu想要通过来连接宿主机的局域网代理&#xff0c;访问外网 可以…...

ubuntu20.04 opencv4.2 安装笔记

参考&#xff1a; https://docs.opencv.org/4.x/d7/d9f/tutorial_linux_install.html Build with opencv_contrib # 1. Install minimal prerequisites&#xff0c; libgtk2.0-dev pkg-config 用来显示图像 sudo apt update && sudo apt install -y cmake g wget un…...

ubuntu安装nginx以及php的部署

目录 1.安装依赖包 2.安装nginx 3.编译nginx 4.启动nginx 5.访问nginx 6.增加源地址 7.安装php 8.配置php-fpm 9.修改权限 10.配置nginx里的php 11.启动php-fpm 12.配置php文件以及权限 13.登陆查看 1.安装依赖包 apt-get install gcc apt-get install libpcre3 l…...

IntelliJ IDEA 2021/2022关闭双击shift全局搜索

我这里演示的是修改&#xff0c;删除是右键的时候选择Remove就好了 IDEA左上角 File-->Settings 找到Navigate -->Search Everywhere &#xff0c;右键添加快捷键。 OK --> Apply应用...

HTML 元素中的name 属性

name 属性是 HTML 元素中常用的属性之一。它用于指定表单元素的名称&#xff0c;以便在提交表单时将其值与对应的键关联起来。 每个表单元素&#xff08;例如 <input>、<select> 和 <textarea>&#xff09;都可以具有一个 name 属性&#xff0c;该属性为元素…...

快速上手React:从概述到组件与事件处理

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 「推荐专栏」&#xff1a; ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄&#xff0c;vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff…...

K8S系列文章之 离线安装自动化工具Ansible

参考 文档 离线安装 Ansible - DevOps - dbaselife 一、Ansible简介 Ansible是一款开源的IT配置管理工具&#xff0c;常被IT界的小伙伴们用于自动化的场景&#xff0c;多用在服务部署、配置管理方面。配置文件采用最常见的yaml格式&#xff0c;学习起来也是比较容易&#xff…...

mysql8.0.3集群搭建

下载mysql安装包&#xff1a; https://dev.mysql.com/downloads/mysql/5.7.html#downloads 准备环境 1、准备三台服务器并设置hosts 192.168.236.143 mysql1 192.168.236.144 mysql2 192.168.236.145 mysql32、设置免密登陆 #生成秘钥 ssh-keygen -t rsa #一直按Enter即可…...

vue中router路由的原理?两种路由模式如何实现?(vue2) -(上)

平时我们编写路由时&#xff0c;通常直接下载插件使用&#xff0c;在main.js文件中引入直接通过引入vue-router中的Router通过Vue.use使用以后定义一个routeMap数组&#xff0c;里边是我们编写路由的地方&#xff0c;最后通过实例化一个 Router实例 将routes我们定义的routeMao…...

消息队列(3) -封装数据库的操作

前言 上一篇博客我们写了, 关于交换机, 队列,绑定, 写入数据库的一些建库建表的操作 这一篇博客中,我们将建库建表操作,封装一下实现层一个类来供上层服务的调用 , 并在写完该类之后, 测试代码是否完整 实现封装 在写完上述的接口类 与 xml 后, 我们想要 创建一个类 ,来调用…...

PostgreSQL中根据时间段范围查询数据,如19:29:10到20:29:10范围内的数据,排除年月日

数据格式如下 问题描述 我的SQL语句条件是 WHERE (TO_CHAR(cti.binder_gen_time, YYYY-MM-DD HH:mm:ss) > 19:29:10 AND TO_CHAR(cti.binder_gen_time, YYYY-MM-DD HH:mm:ss) < 20:29:10)为什么我数据的时间是2023-07-20 17:58:29也能被查出来&#xff1f; 问题解决…...

【二分+贪心】CF1665 C

Problem - C - Codeforces 题意&#xff1a; 思路&#xff1a; 一开始想太简单wa6了 只想到先感染大的分量&#xff0c;然后最后把最大的分量剩下的染色 但是可能会有别的分量更大&#xff08;因为最后给最大的染色之后可能不再是最大的&#xff09; 可以用堆维护&#xf…...

【Wamp】安装 | 局域网内设备访问

安装教程&#xff1a; https://wampserver.site/article/1.html 下载 https://www.wampserver.com/en/ 安装路径上不能有中文 安装好之后图标呈绿色 放入网页文件 将网页文件放置于wamp文件夹的www子文件夹 例如&#xff1a;\Wamp\program\www 修改http端口 WAMP服务器…...

【golang】类型推断和变量重声明

类型推断是一种编程语言在编译期自动解释表达式类型的能力。 1.Go语言的类型推断可以带来哪些好处&#xff1f; 在写代码时&#xff0c;我们通过使用Go语言的类型推断会节省敲击次数&#xff0c;而节省下来的键盘敲击次数几乎可以忽略不记。但它真正的好处&#xff0c;往往会…...

“算法详解”系列第3卷贪心算法和动态规划出版

“算法详解”系列图书共有4卷&#xff0c;目前1到3卷已经出版。最新出版的是第3卷—贪心算法和动态规划。 算法详解 卷3 贪心算法和动态规划 “算法详解”系列图书共有4卷&#xff0c;本书是第3卷—贪心算法和动态规划。其中贪心算法主要包括调度、最小生成树、集群、哈夫曼编…...

CSS前端开发指南:创造精美的用户界面

简介&#xff1a; 《CSS前端开发指南&#xff1a;创造精美的用户界面》是一本旨在帮助读者掌握CSS技术&#xff0c;实现令人惊叹的前端用户界面的实用指南。无论您是初学者还是有经验的开发者&#xff0c;本书都将为您提供全面的知识和实用技巧&#xff0c;帮助您创建引人注目…...

代数学与理论物理中常见的群

代数学与理论物理中常见的群 代数学与理论物理中常见的群 四阶群 六阶群 对称群 二维转动群 三维转动群 三维正交群 群 O3群...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...