深度学习(37)—— 图神经网络GNN(2)
深度学习(37)—— 图神经网络GNN(2)
这一期主要是一些简单示例,针对不同的情况,使用的数据都是torch_geometric的内置数据集
文章目录
- 深度学习(37)—— 图神经网络GNN(2)
- 1. 一个graph对节点分类
- 2. 多个graph对图分类
- 3.Cluster-GCN:当遇到数据很大的图
1. 一个graph对节点分类
from torch_geometric.datasets import Planetoid # 下载数据集用的
from torch_geometric.transforms import NormalizeFeatures
from torch_geometric.nn import GCNConv
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
import torch
from torch.nn import Linear
import torch.nn.functional as F# 可视化部分
def visualize(h, color):z = TSNE(n_components=2).fit_transform(h.detach().cpu().numpy())plt.figure(figsize=(10, 10))plt.xticks([])plt.yticks([])plt.scatter(z[:, 0], z[:, 1], s=70, c=color, cmap="Set2")plt.show()# 加载数据
dataset = Planetoid(root='data/Planetoid', name='Cora', transform=NormalizeFeatures()) # transform预处理
print(f'Dataset: {dataset}:')
print('======================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')data = dataset[0] # Get the first graph object.
print()
print(data)
print('===========================================================================================================')# Gather some statistics about the graph.
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Number of training nodes: {data.train_mask.sum()}')
print(f'Training node label rate: {int(data.train_mask.sum()) / data.num_nodes:.2f}')
print(f'Has isolated nodes: {data.has_isolated_nodes()}')
print(f'Has self-loops: {data.has_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')# 网络定义
class GCN(torch.nn.Module):def __init__(self, hidden_channels):super().__init__()torch.manual_seed(1234567)self.conv1 = GCNConv(dataset.num_features, hidden_channels)self.conv2 = GCNConv(hidden_channels, dataset.num_classes)def forward(self, x, edge_index):x = self.conv1(x, edge_index)x = x.relu()x = F.dropout(x, p=0.5, training=self.training)x = self.conv2(x, edge_index)return xmodel = GCN(hidden_channels=16)
print(model)# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
criterion = torch.nn.CrossEntropyLoss()def train():model.train()optimizer.zero_grad()out = model(data.x, data.edge_index)loss = criterion(out[data.train_mask], data.y[data.train_mask])loss.backward()optimizer.step()return lossdef test():model.eval()out = model(data.x, data.edge_index)pred = out.argmax(dim=1)test_correct = pred[data.test_mask] == data.y[data.test_mask]test_acc = int(test_correct.sum()) / int(data.test_mask.sum())return test_accfor epoch in range(1, 101):loss = train()print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')test_acc = test()
print(f'Test Accuracy: {test_acc:.4f}')
model.eval()
out = model(data.x, data.edge_index)
visualize(out, color=data.y)
2. 多个graph对图分类
- 图也可以进行batch,做法和图像以及文本的batch是一样的
- 和对一张图中的节点分类不同的是:多了聚合操作
将各个节点特征汇总成全局特征,将其作为整个图的编码
import torch
from torch_geometric.datasets import TUDataset # 分子数据集:https://chrsmrrs.github.io/datasets/
from torch_geometric.loader import DataLoader
from torch.nn import Linear
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
from torch_geometric.nn import global_mean_pool# 加载数据
dataset = TUDataset(root='data/TUDataset', name='MUTAG')
print(f'Dataset: {dataset}:')
print('====================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')data = dataset[0] # Get the first graph object.
print(data)
print('=============================================================')# Gather some statistics about the first graph.
# print(f'Number of nodes: {data.num_nodes}')
# print(f'Number of edges: {data.num_edges}')
# print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
# print(f'Has isolated nodes: {data.has_isolated_nodes()}')
# print(f'Has self-loops: {data.has_self_loops()}')
# print(f'Is undirected: {data.is_undirected()}')train_dataset = dataset
print(f'Number of training graphs: {len(train_dataset)}')# 数据用dataloader加载
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
for step, data in enumerate(train_loader):print(f'Step {step + 1}:')print('=======')print(f'Number of graphs in the current batch: {data.num_graphs}')print(data)print()# 模型定义
class GCN(torch.nn.Module):def __init__(self, hidden_channels):super(GCN, self).__init__()torch.manual_seed(12345)self.conv1 = GCNConv(dataset.num_node_features, hidden_channels)self.conv2 = GCNConv(hidden_channels, hidden_channels)self.conv3 = GCNConv(hidden_channels, hidden_channels)self.lin = Linear(hidden_channels, dataset.num_classes)def forward(self, x, edge_index, batch):# 1.对各节点进行编码x = self.conv1(x, edge_index)x = x.relu()x = self.conv2(x, edge_index)x = x.relu()x = self.conv3(x, edge_index)# 2. 平均操作x = global_mean_pool(x, batch) # [batch_size, hidden_channels]# 3. 输出x = F.dropout(x, p=0.5, training=self.training)x = self.lin(x)return xmodel = GCN(hidden_channels=64)
print(model)# 训练
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = torch.nn.CrossEntropyLoss()
def train():model.train()for data in train_loader: # Iterate in batches over the training dataset.out = model(data.x, data.edge_index, data.batch) # Perform a single forward pass.loss = criterion(out, data.y) # Compute the loss.loss.backward() # Derive gradients.optimizer.step() # Update parameters based on gradients.optimizer.zero_grad() # Clear gradients.def test(loader):model.eval()correct = 0for data in loader: # Iterate in batches over the training/test dataset.out = model(data.x, data.edge_index, data.batch)pred = out.argmax(dim=1) # Use the class with highest probability.correct += int((pred == data.y).sum()) # Check against ground-truth labels.return correct / len(loader.dataset) # Derive ratio of correct predictions.for epoch in range(1, 3):train()train_acc = test(train_loader)print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}')
3.Cluster-GCN:当遇到数据很大的图
- 传统的GCN,层数越多,计算越大
- 针对每个cluster进行GCN计算之后更新,数据量会小很多
但是存在问题:如果将一个大图聚类成多个小图,最大的问题是如何丢失这些子图之间的连接关系?——在每个batch中随机将batch里随机n个子图连接起来再计算

-
使用
torch_geometric的内置方法- 首先使用cluster方法分区
- 之后使用clusterloader构建batch
【即】分区后对每个区域进行batch的分配
# 遇到特别大的图该怎么办?
# 图中点和边的个数都非常大的时候会遇到什么问题呢?
# 当层数较多时,显存不够import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
from torch_geometric.datasets import Planetoid
from torch_geometric.transforms import NormalizeFeatures
from torch_geometric.loader import ClusterData, ClusterLoaderdataset = Planetoid(root='data/Planetoid', name='PubMed', transform=NormalizeFeatures())
print(f'Dataset: {dataset}:')
print('==================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')data = dataset[0] # Get the first graph object.
print(data)
print('===============================================================================================================')# Gather some statistics about the graph.
print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Number of training nodes: {data.train_mask.sum()}')
print(f'Training node label rate: {int(data.train_mask.sum()) / data.num_nodes:.3f}')
print(f'Has isolated nodes: {data.has_isolated_nodes()}')
print(f'Has self-loops: {data.has_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')# 数据分区构建batch,构建好batch,1个epoch中有4个batch
torch.manual_seed(12345)
cluster_data = ClusterData(data, num_parts=128) # 1. 分区
train_loader = ClusterLoader(cluster_data, batch_size=32, shuffle=True) # 2. 构建batch.total_num_nodes = 0
for step, sub_data in enumerate(train_loader):print(f'Step {step + 1}:')print('=======')print(f'Number of nodes in the current batch: {sub_data.num_nodes}')print(sub_data)print()total_num_nodes += sub_data.num_nodes
print(f'Iterated over {total_num_nodes} of {data.num_nodes} nodes!')# 模型定义
class GCN(torch.nn.Module):def __init__(self, hidden_channels):super(GCN, self).__init__()torch.manual_seed(12345)self.conv1 = GCNConv(dataset.num_node_features, hidden_channels)self.conv2 = GCNConv(hidden_channels, dataset.num_classes)def forward(self, x, edge_index):x = self.conv1(x, edge_index)x = x.relu()x = F.dropout(x, p=0.5, training=self.training)x = self.conv2(x, edge_index)return xmodel = GCN(hidden_channels=16)
print(model)# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
criterion = torch.nn.CrossEntropyLoss()def train():model.train()for sub_data in train_loader:out = model(sub_data.x, sub_data.edge_index)loss = criterion(out[sub_data.train_mask], sub_data.y[sub_data.train_mask])loss.backward()optimizer.step()optimizer.zero_grad()def test():model.eval()out = model(data.x, data.edge_index)pred = out.argmax(dim=1)accs = []for mask in [data.train_mask, data.val_mask, data.test_mask]:correct = pred[mask] == data.y[mask]accs.append(int(correct.sum()) / int(mask.sum()))return accsfor epoch in range(1, 51):loss = train()train_acc, val_acc, test_acc = test()print(f'Epoch: {epoch:03d}, Train: {train_acc:.4f}, Val Acc: {val_acc:.4f}, Test Acc: {test_acc:.4f}')
这个还是很基础的一些,下一篇会说如何定义自己的数据。还有进阶版的案例。
所有项目代码已经放在github上了,欢迎造访
相关文章:
深度学习(37)—— 图神经网络GNN(2)
深度学习(37)—— 图神经网络GNN(2) 这一期主要是一些简单示例,针对不同的情况,使用的数据都是torch_geometric的内置数据集 文章目录 深度学习(37)—— 图神经网络GNN(…...
Unity游戏源码分享-乐节奏休闲游戏源码 guitar hero 支持mobile
Unity游戏源码分享-乐节奏休闲游戏源码 guitar hero 支持mobile 完整版下载地址:https://download.csdn.net/download/Highning0007/88198766...
VS Code配置Prettier格式化Apex
先决条件 安装nodejs和npm安装vs code安装salesforce extension pack 配置Prettier Apex 创建本地Salesforce项目 (Standard) command shift p -> SFDX: Create Project with Manifest -> Standard 打开terminal运行npm init生成package.json文件 安装prettier ap…...
Spring-Cloud-Loadblancer详细分析_4
在RoundRobinLoadBalancer.choose中的serviceInstanceListSupplierProvider就是获取服务列表的关键,那么此对象是怎么拿到的呢,让我们回到RoundRobinLoadBalancer的创建过程 Configuration(proxyBeanMethods false) ConditionalOnDiscoveryEnabled pub…...
openocd调试esp32(通过FT232H)
之前在学习ESP32,其中有一部分课程是学习openocd通过JTAG调试程序的,因为我用的是ESP32-wroom,usb端口没有集成对应的usb转jtag的ft232,查了ESP32相关的资料(JTAG 调试 - ESP32 - — ESP-IDF 编程指南 latest 文档 (es…...
Nokia5110使用方法及实例编写51单片机
文章目录 Nokia5110实物图引脚和原理图51单片机实例软件模拟SPI实现控制Nokia5110显示字符发送字节时序图(图片太多了,关键图片已截取出来)初始化需要配置实例编写回顾接线结束Nokia5110 Nokia是诺基亚拆下来的屏幕。使用SPI控制 84x48 的点阵 LCD,可以显示 4 行汉字,采用…...
3个月快速入门LoRa物联网传感器开发
在这里插入图片描述 快速入门LoRa物联网传感器开发 LoRa作为一种LPWAN(低功耗广域网络)无线通信技术,非常适合物联网传感器和行业应用。要快速掌握LoRa开发,需要系统学习理论知识,并通过实际项目积累经验。 摘要: 先学习LoRa基础知识:原理、网络架构、协议等,大概需要2周时间…...
【小梦C嘎嘎——启航篇】内存管理小知识~
【小梦C嘎嘎——启航篇】内存管理小知识~😎 前言🙌malloc/calloc/realloc的区别?new 与 deletenew与delete要找好搭档才能保证万无一失 new 与 delete的内部实现细节是怎么样的呢???new 的内部实现细节dele…...
ClickHouse查看执行计划(EXPLAIN语法)
1.EXPLAIN 语法示例 EXPLAIN [AST | SYNTAX | QUERY TREE | PLAN | PIPELINE | ESTIMATE | TABLE OVERRIDE] [setting value, ...] [ SELECT ... | tableFunction(...) [COLUMNS (...)] [ORDER BY ...] [PARTITION BY ...] [PRIMARY KEY] [SAMPLE BY ...] [T…...
线程池
线程池 什么是线程池? 想象一下 假设我是个漂亮妹子,这时候接受了舔狗A的表白,随着时间的推移,逐渐不喜欢A这小子了,于是我就想换个男朋友,可是 1.处理分手,需要消耗一定成本 2.再找一个新对象…...
配置:Terminal和oh-my-posh
目录 命令行安装oh-my-posh查看安装情况配置PowerShell启用oh-my-posh、设置主题配色安装字体Terminal中的配置 命令行安装oh-my-posh Set-ExecutionPolicy Bypass -Scope Process -Force; Invoke-Expression ((New-Object System.Net.WebClient).DownloadString(https://ohmy…...
数据结构--BFS求最短路
数据结构–BFS求最短路 BFS求⽆权图的单源最短路径 注:⽆权图可以视为⼀种特殊的带权图,只是每条边的权值都为1 以 2 为 b e g i n 位置 以2为begin位置 以2为begin位置 代码实现 //求顶点u到其他顶点的最短路径 void BFS_MIN_Distance(Graph G, int u…...
FPGA应用学习笔记----定点除法的gold算法流水线设计
猜一个Y0 a和b上下都Y0 分母越接近一,分子就越接近答案 误差: 下一步迭代为 Y的迭代值: 误差值: 代码的实现如上所示...
Nginx转发的原理和负载均衡
一、Nginx转发的原理 Nginx是一个高性能的反向代理服务器,它可以用于实现请求的转发和负载均衡。以下是Nginx转发的基本原理: 客户端发送请求:客户端向Nginx服务器发送HTTP请求。 Nginx接收请求:Nginx服务器接收到客户端的请求。…...
怎么换ip地址 电脑切换ip地址方法
互联网时代,IP地址是我们在网络上进行通信和访问的身份标识。有时候,我们可能需要更改IP地址,以便获得更好的网络体验或绕过某些限制。本文将介绍如何使用深度IP转换器来更改IP地址。 1:了解IP地址 IP地址是一个由数字和点组成的标…...
软件设计基础
巩固基础,砥砺前行 。 只有不断重复,才能做到超越自己。 能坚持把简单的事情做到极致,也是不容易的。 软件项目管理。 在经历了软件危机和大连的软件项目失败以后,人们对软件工程专业的现状进行了多次分析。得出了普遍性的结论&…...
OptaPlanner笔记5
2.4 与spring boot集成 2.4.4 添加依赖 <dependency><groupId>org.optaplanner</groupId><artifactId>optaplanner-spring-boot-starter</artifactId> </dependency>2.4.8 创建求解器服务 import org.optaplanner.core.api.solver.Solv…...
PS注意事项优漫动游
PS入门注意事项AdobePhotoshop是目前最流行的平面设计软件之一。可以说,只要你接触平面设计,那么无论早晚,你都要和它打交道。关于Photoshop,要说的实在太多太多,但不论你想让它成为你的左膀右臂,或者仅仅是…...
matplotlib 判断鼠标是否点击在当前线上
在开发中有一个需求:对生成的一条线进行拖拽。 我将这个方法实现在线所在的类里,这个过程中需要判断鼠标是否点击在当前线上,从而实现拖拽。 实现代码如下: # 点击事件 def on_press(self,event):if event.inaxes ! self.ax:retur…...
bash中(冒号破折号)的用法 —— 筑梦之路
${PUBLIC_INTERFACE:-eth0} :- 的用途是什么? 含义:如果 $PUBLIC_INTERFACE 存在且不是 null,则返回其值,否则返回 "eth0"。 ${parameter:-word} 使用默认值。如果 parameter 未设置或为 null,则 word 的扩…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...
