当前位置: 首页 > news >正文

VS+QT+Opencv使用YOLOv4对视频流进行目标检测

对单张图像的检测,请参考:https://blog.csdn.net/qq_45445740/article/details/109659938

#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>using namespace cv;
using namespace dnn;
using namespace std;// 初始化参数
float confThreshold = 0.5; // 置信度
float nmsThreshold = 0.4;  // NMS
int inpWidth = 416;  // 网络输入图像的宽度
int inpHeight = 416; // 网络输入图像的高度
vector<string> classes;// 使用非最大值抑制去除低置信度的边界框
void postprocess(Mat& frame, const vector<Mat>& out);// 绘制预测的边界框
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);// 获取输出层的名称
vector<String> getOutputsNames(const Net& net);
void detect_image(string image_path, string modelWeights, string modelConfiguration, string classesFile);
void detect_video(string video_path, string modelWeights, string modelConfiguration, string classesFile);int main(int argc, char** argv)
{// 给出模型的配置和权重文件String modelConfiguration = "E:/00000000E/QT/pracitce/PcbDetectv2/01图像识别/model/yolo-obj.cfg";String modelWeights = "E:/00000000E/QT/pracitce/PcbDetectv2/01图像识别/model/yolo-obj_4000.weights";string image_path = "E:/00000000E/QT/pracitce/PcbDetectv2/01图像识别/image/01.jpg";string classesFile = "E:/00000000E/QT/pracitce/PcbDetectv2/01图像识别/model/classes.names";// "coco.names";// detect_image(image_path, modelWeights, modelConfiguration, classesFile);string video_path = "E:/00000000E/QT/pracitce/PcbDetectv2/02视频检测/video/test.mp4";detect_video(video_path, modelWeights, modelConfiguration, classesFile);cv::waitKey(0);return 0;
}void detect_image(string image_path, string modelWeights, string modelConfiguration, string classesFile) 
{// 加载分类类别ifstream ifs(classesFile.c_str());string line;while (getline(ifs, line)) classes.push_back(line);// 加载网络Net net = readNetFromDarknet(modelConfiguration, modelWeights);net.setPreferableBackend(DNN_BACKEND_OPENCV);net.setPreferableTarget(DNN_TARGET_OPENCL);// 打开视频文件或图像文件或摄像机流string str, outputFile;cv::Mat frame = cv::imread(image_path);// Create a windowstatic const string kWinName = "Deep learning object detection in OpenCV";namedWindow(kWinName, WINDOW_NORMAL);Mat blob;blobFromImage(frame, blob, 1 / 255.0, Size(inpWidth, inpHeight), Scalar(0, 0, 0), true, false);// 设置网络输入net.setInput(blob);// 运行前向传递以获得输出层的输出vector<Mat> outs;net.forward(outs, getOutputsNames(net));// 移除低置信度的边界框postprocess(frame, outs);// 返回推断的总时间(t)和每个层的计时(以layersTimes表示)vector<double> layersTimes;double freq = getTickFrequency() / 1000;double t = net.getPerfProfile(layersTimes) / freq;string label = format("Inference time for a frame : %.2f ms", t);putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 255));// 写入带有检测框的帧imshow(kWinName, frame);cv::waitKey(30);
}void detect_video(string video_path, string modelWeights, string modelConfiguration, string classesFile) 
{string outputFile = "./yolo_out_cpp.avi";;ifstream ifs(classesFile.c_str());string line;while (getline(ifs, line)) classes.push_back(line);Net net = readNetFromDarknet(modelConfiguration, modelWeights);net.setPreferableBackend(DNN_BACKEND_OPENCV);net.setPreferableTarget(DNN_TARGET_CPU);VideoCapture cap;Mat frame, blob;try {// 打开视频文件ifstream ifile(video_path);if (!ifile) throw("error");cap.open(video_path);}catch (...) {cout << "Could not open the input image/video stream" << endl;return;}// Get the video writer initialized to save the output video//  video.open(outputFile, //	VideoWriter::fourcc('M', 'J', 'P', 'G'), 28, Size(cap.get(CAP_PROP_FRAME_WIDTH), cap.get(CAP_PROP_FRAME_HEIGHT)));static const string kWinName = "Deep learning object detection in OpenCV";namedWindow(kWinName, WINDOW_NORMAL);while (waitKey(1) < 0){cap >> frame;if (frame.empty()) {cout << "Done processing !!!" << endl;cout << "Output file is stored as " << outputFile << endl;waitKey(3000);break;}blobFromImage(frame, blob, 1 / 255.0, Size(inpWidth, inpHeight), Scalar(0, 0, 0), true, false);net.setInput(blob);vector<Mat> outs;net.forward(outs, getOutputsNames(net));postprocess(frame, outs);vector<double> layersTimes;double freq = getTickFrequency() / 1000;double t = net.getPerfProfile(layersTimes) / freq;string label = format("Inference time for a frame : %.2f ms", t);putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 255));Mat detectedFrame;frame.convertTo(detectedFrame, CV_8U);imshow(kWinName, frame);}cap.release();
}void postprocess(Mat& frame, const vector<Mat>& outs)
{vector<int> classIds;vector<float> confidences;vector<Rect> boxes;for (size_t i = 0; i < outs.size(); ++i){// 扫描网络输出的所有边界框,只保留置信度高的边界框。将盒子的类标签指定为盒子得分最高的类float* data = (float*)outs[i].data;for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols){Mat scores = outs[i].row(j).colRange(5, outs[i].cols);Point classIdPoint;double confidence;// 获取最高分的值和位置minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);if (confidence > confThreshold){int centerX = (int)(data[0] * frame.cols);int centerY = (int)(data[1] * frame.rows);int width = (int)(data[2] * frame.cols);int height = (int)(data[3] * frame.rows);int left = centerX - width / 2;int top = centerY - height / 2;classIds.push_back(classIdPoint.x);confidences.push_back((float)confidence);boxes.push_back(Rect(left, top, width, height));}}}// 执行非最大抑制以消除置信度较低的冗余重叠框vector<int> indices;NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);for (size_t i = 0; i < indices.size(); ++i){int idx = indices[i];Rect box = boxes[idx];drawPred(classIds[idx], confidences[idx], box.x, box.y,box.x + box.width, box.y + box.height, frame);}}// 绘制预测框
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)
{// 绘制显示边界框的矩形rectangle(frame, Point(left, top), Point(right, bottom), Scalar(255, 178, 50), 3);// 获取类名及其置信度的标签string label = format("%.2f", conf);if (!classes.empty()){CV_Assert(classId < (int)classes.size());label = classes[classId] + ":" + label;}// 在边界框的顶部显示标签int baseLine;Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);top = max(top, labelSize.height);rectangle(frame, Point(left, top - round(1.5 * labelSize.height)), Point(left + round(1.5 * labelSize.width), top + baseLine), Scalar(255, 255, 255), FILLED);putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 0, 0), 1);
}vector<String> getOutputsNames(const Net& net)
{static vector<String> names;if (names.empty()){// 获取输出层的索引,即输出不相连的层vector<int> outLayers = net.getUnconnectedOutLayers();vector<String> layersNames = net.getLayerNames();names.resize(outLayers.size());for (size_t i = 0; i < outLayers.size(); ++i)names[i] = layersNames[outLayers[i] - 1];}return names;
}

相关文章:

VS+QT+Opencv使用YOLOv4对视频流进行目标检测

对单张图像的检测&#xff0c;请参考&#xff1a;https://blog.csdn.net/qq_45445740/article/details/109659938 #include <fstream> #include <sstream> #include <iostream> #include <opencv2/dnn.hpp> #include <opencv2/imgproc.hpp> #inc…...

oracle创建管理用户并授权

oracle创建管理用户并授权 创建用户 create user test identified by test;修改密码 alter user test identified by 123456;删除用户 drop user test;删除拥有对象的用户 若用户拥有对象&#xff0c;则不能直接删除&#xff0c;否则将返回一个错误值。指定关键字cascade,…...

​三江学院图书馆藏八一新书《乡村振兴战略下传统村落文化旅游设计》

​三江学院图书馆藏八一新书《乡村振兴战略下传统村落文化旅游设计》...

机器学习笔记 - 基于PyTorch + 类似ResNet的单目标检测

一、获取并了解数据 我们将处理年龄相关性黄斑变性 (AMD) 患者的眼部图像。 数据集下载地址,从下面的地址中,找到iChallenge-AMD,然后下载。 Baidu Research Open-Access Dataset - DownloadDownload Baidu Research Open-Access Datasethttps://ai.baidu.com/bro…...

系列二、Redis简介

一、概述 # 官网 https://redis.io/ 总结&#xff1a;redis是一个内存型的数据库。 二、特点 Redis是一个高性能key/value内存型数据库。Redis支持丰富的数据类型。Redis支持持久化 。Redis单线程,单进程。...

基于TF-IDF+TensorFlow+词云+LDA 新闻自动文摘推荐系统—深度学习算法应用(含ipynb源码)+训练数据集

目录 前言总体设计系统整体结构图系统流程图 运行环境Python 环境TensorFlow环境方法一方法二 模块实现1. 数据预处理1&#xff09;导入数据2&#xff09;数据清洗3&#xff09;统计词频 2. 词云构建3. 关键词提取4. 语音播报5. LDA主题模型6. 模型构建 系统测试工程源代码下载…...

尼科彻斯定理-C语言/Java

描述 验证尼科彻斯定理&#xff0c;即&#xff1a;任何一个整数m的立方都可以写成m个连续奇数之和。 例如&#xff1a; 1^31 2^335 3^37911 4^313151719 输入一个正整数m&#xff08;m≤100&#xff09;&#xff0c;将m的立方写成m个连续奇数之和的形式输出。&…...

C++学习笔记——从面试题出发学习C++

C学习笔记——从面试题出发学习C C学习笔记——从面试题出发学习C1. 成员函数的重写、重载和隐藏的区别&#xff1f;2. 构造函数可以是虚函数吗&#xff1f;内联函数可以是虚函数吗&#xff1f;析构函数为什么一定要是虚函数&#xff1f;3. 解释左值/右值、左值/右值引用、std:…...

WebAPIs 第二天

DOM事件基础 事件监听事件类型事件对象 一.事件监听 ① 概念&#xff1a;就是让程序检测是否有事件发生&#xff0c;一旦有事件触发&#xff0c;就立即调用一个函数做出响应&#xff0c;也成为绑定事件或者注册事件 ② 语法&#xff1a;元素对象.addEventListener(事件类型&…...

解决macOS执行fastboot找不到设备的问题

背景 最近准备给我的备用机Redmi Note 11 5G刷个类原生的三方ROM&#xff0c;MIUI实在是用腻了。搜罗了一番&#xff0c;在XDA上找到了一个基于Pixel Experience开发的ROM&#xff1a;PixelExperience Plus for Redmi Note 11T/11S 5G/11 5G/POCO M4 Pro 5G (everpal)&#xf…...

Linux命令 -- chmod

Linux命令 -- chmod 参数含义权限说明修改文件权限修改目录权限 参数含义 文件用户 u 文件所有者g 文件所有者同组的用户o 其它用户a 所有用户 文件权限 r 读权限&#xff08;对应数值4&#xff09;w 写权限&#xff08;对应数值2&#xff09;x 执行权限&#xff08;对应数…...

国产超低功耗32位MCU的应用

随着物联网技术的不断发展&#xff0c;超低功耗MCU已经成为了物联网方案中主要的芯片处理技术。超低功耗MCU具有众多的优点&#xff0c;其中一大所用就是能够大大提高物联网设备的续航能力&#xff0c;保证设备在长时间内不掉电不断电。那么&#xff0c;超低功耗MCU在物联网方案…...

将数组(矩阵)旋转根据指定的旋转角度scipy库的rotate方法

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 将数组(矩阵)旋转 根据指定的旋转角度 scipy库的rotate方法 关于下列代码说法正确的是&#xff1f; import numpy as np from scipy.ndimage import rotate a np.array([[1,2,3,4], …...

MFC创建和使用OCX控件

文章目录 MFC建立OCX控件注册OCX控件与反注册使用Internet Explorer测试ocx控件OCX控件添加方法OCX控件添加事件Web使用OCX控件MFC使用OCX控件使用OCX控件调用ocx的功能函数对ocx的事件响应OCX控件调试工具tstcon32.exe加载ocx控件使用tstcon32.exe调试ocxMFC建立OCX控件 新建…...

【设计模式】抽象工厂模式

抽象工厂模式&#xff08;Abstract Factory Pattern&#xff09;是围绕一个超级工厂创建其他工厂。该超级工厂又称为其他工厂的工厂。这种类型的设计模式属于创建型模式&#xff0c;它提供了一种创建对象的最佳方式。 在抽象工厂模式中&#xff0c;接口是负责创建一个相关对象…...

小白带你学习linux的Redis3.2集群(三十三)

目录 一、Redis主从复制 1、概念 2、作用 3、缺点 4、流程 5、搭建 6、验证 二、Reids哨兵模式 1、概念 2、作用 3、缺点 4、结构 5、搭建 6、验证 三、Redis集群 1、概述 2、原理 3、架构细节 4、选举过程 四、搭建 1、第一步现在外部使用finalshell 9.9…...

嵌入式技术,就在你的手边!

嵌入式技术&#xff0c;听起来多么高大上的名词&#xff0c;同时它也确实是当今信息技术的前沿领域&#xff0c;但这并不意味着它就距离我们很遥远。 事实恰恰相反&#xff0c;在当今科技发展迅猛的时代&#xff0c;嵌入式技术成为了人们生活中不可或缺的一部分。它以其小巧、高…...

nodejs+vue+elementui健康饮食美食菜谱分享网站系统

本系统采用了nodejs语言的vue框架&#xff0c;数据采用MySQL数据库进行存储。结合B/S结构进行开发设计&#xff0c;功能强大&#xff0c;界面化操作便于上手。本系统具有良好的易用性和安全性&#xff0c;系统功能齐全&#xff0c;可以满足饮食分享管理的相关工作。 语言 node.…...

input 设置type=“number“,鼠标悬停关闭提示语

一、问题 最近刚发现input 设置type"number"之后&#xff0c;鼠标悬停会出现提示语&#xff1a;请输入有效值。两个最接近的有效值分别为xx和xx。想要输入的值确实为number格式&#xff0c;又可以输入小数&#xff0c;不限制小数位&#xff0c;所以要把这讨厌的提示去…...

CSDN互利共赢玩法实战!!!

csdn项目第一波基本都顺利跑了起来&#xff0c;我们总计找来了一两千个新的项目源码&#xff0c;来让大家变现。 在实战中&#xff0c;主要两个玩法&#xff0c;一个引流&#xff0c;一个付费资源。付费资源门槛越来越高&#xff0c;所以我们这一波升级完成的号&#xff0c;就非…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

pycharm 设置环境出错

pycharm 设置环境出错 pycharm 新建项目&#xff0c;设置虚拟环境&#xff0c;出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心&#xff0c;直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法&#xff0c;涵盖基础规则、优化算法和容错机制&#xff1a; 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则&#xff1a; 大尺寸/重量积木在下&#xf…...