当前位置: 首页 > news >正文

ID3 决策树

西瓜数据集D如下:

编号色泽根蒂敲声纹理脐部触感好瓜
1青绿蜷缩浊响清晰凹陷硬滑
2乌黑蜷缩沉闷清晰凹陷硬滑
3乌黑蜷缩浊响清晰凹陷硬滑
4青绿蜷缩沉闷清晰凹陷硬滑
5浅白蜷缩浊响清晰凹陷硬滑
6青绿稍蜷浊响清晰稍凹软粘
7乌黑稍蜷浊响稍糊稍凹软粘
8乌黑稍蜷浊响清晰稍凹硬滑
9乌黑稍蜷沉闷稍糊稍凹硬滑
10青绿硬挺清脆清晰平坦软粘
11浅白硬挺清脆模糊平坦硬滑
12浅白蜷缩浊响模糊平坦软粘
13青绿稍蜷浊响稍糊凹陷硬滑
14浅白稍蜷沉闷稍糊凹陷硬滑
15乌黑稍蜷浊响清晰稍凹软粘
16浅白蜷缩浊响模糊平坦硬滑
17青绿蜷缩沉闷稍糊稍凹硬滑

即集合D为分类问题,分类瓜的好坏是一个二分类问题,故|y| =2 ,故只存在p1,p2

信息熵为衡量信息混乱程度的量
记好瓜比例为p1,坏瓜比例为p2

1. 若全是好瓜 , 则 p 1 = 1 , p 2 = 0 E n t ( D ) = − ∑ k = 1 ∣ y ∣ p k l o g 2 p k = − ( p 1 l o g 2 p 1 + p 2 l o g 2 p 2 ) = 1 ⋅ l o g 2 ⋅ 1 + 0 ⋅ l o g 2 ⋅ 0 = 0 2. 若全是好瓜 , 则 p 1 = 0 , p 2 = 1 E n t ( D ) = − ∑ k = 1 ∣ y ∣ p k l o g 2 p k = − ( p 1 l o g 2 p 1 + p 2 l o g 2 p 2 ) = 0 ⋅ l o g 2 ⋅ 0 + 1 ⋅ l o g 2 ⋅ 1 = 0 则完全不混乱为全是好瓜或全是坏瓜 , E n t ( D ) = 0 2. 若全是好坏瓜个一半 , 则 p 1 = 1 2 , p 2 = 1 2 E n t ( D ) = − ∑ k = 1 ∣ y ∣ p k l o g 2 p k = − ( p 1 l o g 2 p 1 + p 2 l o g 2 p 2 ) = − ( 1 2 ⋅ l o g 2 ⋅ 1 2 + 1 2 ⋅ l o g 2 ⋅ 1 2 ) = 1 则最混乱为 E n t ( D ) = 1 1.若全是好瓜,则p_1=1,p_2=0 \\ Ent(D) = -\sum\limits _{k=1}^{|y|}p_klog_2p_k \\= -(p_1log_2p_1 + p_2log_2p_2 ) \\=1\cdot log_2\cdot 1 + 0\cdot log_2\cdot 0 \\=0\\ 2.若全是好瓜,则p_1=0,p_2=1 \\ Ent(D) = -\sum\limits _{k=1}^{|y|}p_klog_2p_k \\= -(p_1log_2p_1 + p_2log_2p_2 ) \\=0\cdot log_2\cdot 0 + 1\cdot log_2\cdot 1 \\=0\\ 则完全不混乱为全是好瓜或全是坏瓜,Ent(D) = 0\\ 2.若全是好坏瓜个一半,则p_1=\frac12,p_2=\frac12 \\ Ent(D) = -\sum\limits _{k=1}^{|y|}p_klog_2p_k \\= -(p_1log_2p_1 + p_2log_2p_2 ) \\=-(\frac12\cdot log_2\cdot \frac12 + \frac12\cdot log_2\cdot \frac12 )\\=1\\ 则最混乱为Ent(D) = 1 1.若全是好瓜,p1=1,p2=0Ent(D)=k=1ypklog2pk=(p1log2p1+p2log2p2)=1log21+0log20=02.若全是好瓜,p1=0,p2=1Ent(D)=k=1ypklog2pk=(p1log2p1+p2log2p2)=0log20+1log21=0则完全不混乱为全是好瓜或全是坏瓜,Ent(D)=02.若全是好坏瓜个一半,p1=21,p2=21Ent(D)=k=1ypklog2pk=(p1log2p1+p2log2p2)=(21log221+21log221)=1则最混乱为Ent(D)=1

当前样本集合D中第k类样本所占比例为pk(k=1,2,3,…,|y|),则D的信息熵为:

E n t ( D ) = − ∑ k = 1 ∣ y ∣ p k l o g 2 p k Ent(D) = -\sum\limits _{k=1}^{|y|}p_klog_2p_k Ent(D)=k=1ypklog2pk

信息增益为:

G a i n ( D , a ) = E n t ( D ) − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ E n t ( D v ) Gain(D,a) = Ent(D) - \sum\limits _{v=1}^V \frac{|Dv|}{|D|}Ent(D^v) Gain(D,a)=Ent(D)v=1VDDvEnt(Dv)

import math
D = [
['青绿','蜷缩','浊响','清晰','凹陷','硬滑','是'],
['乌黑','蜷缩','沉闷','清晰','凹陷','硬滑','是'],
['乌黑','蜷缩','浊响','清晰','凹陷','硬滑','是'],
['青绿','蜷缩','沉闷','清晰','凹陷','硬滑','是'],
['浅白','蜷缩','浊响','清晰','凹陷','硬滑','是'],
['青绿','稍蜷','浊响','清晰','稍凹','软粘','是'],
['乌黑','稍蜷','浊响','稍糊','稍凹','软粘','是'],
['乌黑','稍蜷','浊响','清晰','稍凹','硬滑','是'],
['乌黑','稍蜷','沉闷','稍糊','稍凹','硬滑','否'],
['青绿','硬挺','清脆','清晰','平坦','软粘','否'],
['浅白','硬挺','清脆','模糊','平坦','硬滑','否'],
['浅白','蜷缩','浊响','模糊','平坦','软粘','否'],
['青绿','稍蜷','浊响','稍糊','凹陷','硬滑','否'],
['浅白','稍蜷','沉闷','稍糊','凹陷','硬滑','否'],
['乌黑','稍蜷','浊响','清晰','稍凹','软粘','否'],
['浅白','蜷缩','浊响','模糊','平坦','硬滑','否'],
['青绿','蜷缩','沉闷','稍糊','稍凹','硬滑','否']
]
A = ['色泽','根蒂','敲声','纹理','脐部','触感','好瓜']# 当前样本集合D中第k类样本所占比例为pk(k=1,2,3,…,|y|)
# 计算A的信息熵,以数据最后一列为分类
def getEnt(D):# 获取一个类型k->出现次数的mapkMap = dict()for dLine in D:# 获取分类值kk = dLine[len(dLine) - 1]# 获取当前k出现的次数kNum = kMap.get(k)if  kNum is None:kMap[k] = 1else:kMap[k] = kNum + 1# 遍历mapdLen = len(D)rs = 0for kk in kMap:pk = kMap[kk]/dLenrs = rs + pk * math.log2(pk)return -rs# 求信息增益,aIndex为属性列号
def getGain(D,aIndex):dMap = dict()for dLine in D:# 获取属性k = dLine[aIndex]# 属性所属的数组dChildren = dMap.get(k)if  dChildren is None:dChildren = []dMap[k] = dChildrendChildren.append(dLine)rs = 0    for key in dMap:dChildren = dMap[key]entx = getEnt(dChildren)print(entx)r = len(dChildren)/len(D) * entxrs = rs + rreturn getEnt(D) - rs

相关文章:

ID3 决策树

西瓜数据集D如下: 编号色泽根蒂敲声纹理脐部触感好瓜1青绿蜷缩浊响清晰凹陷硬滑是2乌黑蜷缩沉闷清晰凹陷硬滑是3乌黑蜷缩浊响清晰凹陷硬滑是4青绿蜷缩沉闷清晰凹陷硬滑是5浅白蜷缩浊响清晰凹陷硬滑是6青绿稍蜷浊响清晰稍凹软粘是7乌黑稍蜷浊响稍糊稍凹软粘是8乌黑稍蜷浊响清晰…...

简单线性回归:预测事物间简单关系的利器

文章目录 🍀简介🍀什么是简单线性回归?🍀简单线性回归的应用场景使用步骤:注意事项: 🍀代码演示🍀结论 🍀简介 在数据科学领域,线性回归是一种基本而强大的统…...

Vue2-收集表单数据、过滤器、内置指令与自定义指令、Vue生命周期

🥔:我徒越万重山 千帆过 万木自逢春 更多Vue知识请点击——Vue.js VUE2-Day4 收集表单数据1、不同标签的value属性2、v-model的三个修饰符 过滤器内置指令与自定义指令1、内置指令2、自定义指令定义语法(1)函数式(2&am…...

正则表达式学习详解

正则表达式 正则表达式(Regular Expression),通常简称为正则或正则表达式,是一种用于描述字符串模式的工具。它是由一系列字符和特殊字符组成的字符串,用于定义搜索模式或进行字符串匹配、替换、提取等操作。 正则表…...

工具箱:在线免费使用的文档工具:(PDF转换,图片压缩等)

这些都是博主亲自使用过的,可以使用。 PDF转换器: http://www.pdfdo.com/ 图片压缩: 免费在线图片/视频压缩工具 | 图片压缩 | 免费 JPG PNG GIF 图像压缩 (yalijuda.com) 文档OCR转EXCEL: 文字识别 OCR_ 图片文字识别_图片文字智能识别…...

Qt6之QStackedWidget——Qt仿ToDesk(2)

一、 QStackedWidget概述 QStackedWidget也叫堆栈窗体类,它继承于QFrame,主要与QListWidget等结合使用,实现“一个界面多个页面切换”。 二、QStackedWidget示例 如下图,当点击左边 QListWidget里的菜单时,右边跟随切…...

Harbor企业镜像仓库部署(本地)

简述: Docker 官方镜像仓库是用于管理公共镜像的地方,大家可以在上面找到想要的镜像,也可以把自己的镜像推送上去。但是有时候服务器无法访问互联网,或者不希望将自己的镜像放到互联网上,那么就需要用到 Docker Regis…...

【Linux】如何打包成动静态库,第三方动静态库如何使用?

文章目录 1. 打包成静态库2. 打包成动态库(共享库)3. 使用第三方静态库4. 使用第三方动态库 5. 动态库的加载6. 注意事项 库的名称:去掉前面的 lib 去掉后面的 .a(版本号) .so(版本号) 剩下的,才是库正真的名称。 查看文件依赖库…...

SAP MM学习笔记20- SAP中的英文2 - SD中英文,日语,中文

SD模块中的英文,日语,中文 对照。 販売管理 日本語英語中国語受注伝票sales order销售订单出荷伝票delivery order交货订单ピッキングリストpicking list领货清单シップメント伝票shipment document发运单据出庫確認post goods issue发货确认請求伝票b…...

计算机网络中的一些基本概念

IP地址: 址用于定位主机的网络地址。是一个32位的二进制数,通常被分割为4个“8位二进制数”(也就是4个字节).**端口号:**在网络通信中,IP地址用于标识主机网络地址,端口号可以标识主机中发送数据、接收数据的进程。简单…...

pytest 用例运行方式

一、命令行方式运行 执行某个目录下所有的用例,符合规范的所有用例 进入到对应的目录,直接执行pytest; 例如需要执行testcases 下的所有用例; 可以进入testcases 目录; 然后执行pytest 进入对应目录的上级目录,执行pytest 目录名称/ ; ; 例如需要执行testcases 下…...

简单入门seleniumUI自动化测试

目录 一、selenium的介绍 二、selenium的原理 三、selenium的八种元素定位的方法 1、ID定位: 2 、name定位: 3、class定位: 4、tag定位: 5、link_text定位: 6、partial_link_text定位: 7、css定位…...

Excel(1):表头或列头冻结

1.需求 对于较大的excel,通常需要固定一部分内容,另一份内容为可翻动。 2.解决方式 在视图中选择冻结窗格,需要注意的是,选择冻结窗格时,窗格的左上方的表格区域是固定不动的,只可以向下或者向右活动。...

通达OA SQL注入漏洞【CVE-2023-4166】

通达OA SQL注入漏洞【CVE-2023-4166】 一、产品简介二、漏洞概述三、影响范围四、复现环境POC小龙POC检测工具: 五、修复建议 免责声明:请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损…...

全网最细,Python接口自动化测试-Session会话保持(实战详细)

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 在接口测试的过程…...

Java项目初始化ES、MYSQL表结构及表数据

一、初始化MYSQL数据 public boolean initMysql() throws Exception {log.info("initMysql.start");//获取所连接的数据库名称String database systemMapper.getDatabase();if (StringUtils.isBlank(database)) {throw new BusinessException("连接数据库失败,…...

2023-08-13力扣每日一题

链接&#xff1a; 88. 合并两个有序数组 题意&#xff1a; 如题 解&#xff1a; 从后往前&#xff08;从大到小&#xff09;插入排序&#xff0c;这样就不会影响原先的有序性 实际代码&#xff1a; #include<bits/stdc.h> using namespace std; void merge(vector…...

下一代深度学习的思考与若干问题

下一代深度学习的思考和若干问题...

【Linux】IP协议——网络层

目录 IP协议 基本概念 IP协议格式 分片与组装 网段划分 特殊的IP地址 IP地址的数量限制 私网IP地址和公网IP地址 路由 路由表生成算法 IP协议 IP协议全称为“网际互连协议&#xff08;Internet Protocol&#xff09;”&#xff0c;IP协议是TCP/IP体系中的网络层协议…...

【CSS学习笔记】

学习内容 1.css是什么 2.CSS怎么用&#xff08;快速入门&#xff09; 3.CSS选择器&#xff08;重点 难点&#xff09; 4.美化页面&#xff08;文字、阴影、超链接、列表、渐变…&#xff09; 5.盒子模型 6.浮动 7.定位 8.网页动画&#xff08;特效&#xff09; 1.什么是CSS C…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...