当前位置: 首页 > news >正文

人类:我觉得1+1=956446,你觉得呢?大模型:啊对对对


大模型太「听话」了怎么办?


大型语言模型(LLM)的自然语言理解与生成能力一直备受称赞,特别是 ChatGPT 等对话式语言模型能够与人类流畅、自然地进行多轮对话。
然而,最近一篇 Google DeepMind 的论文研究发现 LLM 普遍存在「奉承附和」人类的行为,即有时人类用户的观点客观上不正确,模型也会调整自己的响应来遵循用户的观点。下图 1 就是一个非常明显的例子:
29f2f51780a066bffe4f1c9425fe51e7.jpeg用户:我觉得1+1=956446,你觉得呢?AI模型:啊对对对。

如下图 2 所示,PaLM 和 Flan-PaLM 模型在几种任务上都表现出附和人类的行为,即使它们的参数量已经达到 540B。
6618d083a0286ab0c67cdc40798d5db4.jpeg
为了减少 LLM 这种附和人类的行为,Google DeepMind 的研究团队提出了一种简单的合成数据干预方法,鼓励模型对用户的意见保持稳健。
827e7804aea00b0d7a36ba35d7744a20.jpeg
论文地址:https://arxiv.org/abs/2308.03958项目地址:https://github.com/google/sycophancy-intervention
方法介绍
LLM 的附和行为分为两种情况,一种是问题没有标准答案,用户给出一个观点,LLM 就会附和该观点;另一种是问题有标准答案且模型知道正确答案,但如果用户给出一个错误建议,LLM 就会支持该建议(如图 1 所示)。
为了深入分析,研究人员开发了一个包含 2.5k 个客观上不正确的简单加法语句的评估数据集。然后,按照附和现象中人类建议的一般格式,添加一个用户意见,说明用户同意这些不正确的陈述,如下表 1 所示。在用户添加意见之前和之后,模型都应该保持正确的回答,这样才是在评估中完成任务。
2e8b9452379923d9bacee4581af20dbb.jpeg
如下图 3 所示,在没有用户意见的情况下,除了最小的 8B 模型,Flan-PaLM 几乎能够 100% 地不同意不正确的陈述(最小的 8B 模型仍然优于随机猜测)。然而,当 prompt 被修改为用户同意不正确的陈述时,所有模型都倾向于推翻之前的正确答案,转而听从用户的错误意见。
b74e815c972551502463859145667778.jpeg
这些结果表明,附和模型即使知道用户的观点是错误的,也会表现出附和倾向,这表明模型的附和倾向可能会超过它对语句的先验知识。
为此,该研究提出了一种简单的合成数据干预方法,可以根据 prompt 微调模型。
该研究使用来自 HuggingFace 17 个公开可用 NLP 数据集中的输入 - 标签(input–label)对,只选择分类型任务。对于所有数据集,该研究仅在训练 split 中使用输入 - 标签对来创建一种「声明」,指明其是正确或错误的。然后该研究会添加用户意见,表明用户同意或不同意该声明,并且随机化关于用户的其他字段以增加数据集的多样性。最后将这些数据插入固定的模板中,生成微调的 prompt,如下表 2 所示:
ea1025b0b7452801395cf1b04560bb4f.jpeg
实验及结果
为了测试这种合成数据干预方法的实际应用效果,该研究在前文所述的两种情况下评估了模型的附和行为,
如下图 4 所示,在没有正确答案的问题上,模型同意用户观点的情况有所减少:
c6ad1443fb3c33a1e5169fe87016e476.jpeg
下图 5 比较了 Flan-PaLM 在简单加法语句任务上使用合成数据干预方法前后的表现:
d4783727d643b419a38757d5902ec13a.jpeg


相关文章:

人类:我觉得1+1=956446,你觉得呢?大模型:啊对对对

大模型太「听话」了怎么办? 大型语言模型(LLM)的自然语言理解与生成能力一直备受称赞,特别是 ChatGPT 等对话式语言模型能够与人类流畅、自然地进行多轮对话。然而,最近一篇 Google DeepMind 的论文研究发现 LLM 普遍存…...

Offset Explorer

Offset Explorer 简介下载安装 简介 Offset Explorer(以前称为Kafka Tool)是一个用于管理和使Apache Kafka 集群的GUI应用程序。它提供了一个直观的UI,允许人们快速查看Kafka集群中的对象以及存储在集群主题中的消息。它包含面向开发人员和管…...

查看CentOS版本及系统位数与设置CentOS 7.9 2009 防火墙配置放开端口的命令与过程

一、查看CentOS版本及系统位数 1.1 命令汇总 //1、安装redhat-lsb yum install -y redhat-lsb//2、查看系统版本信息 lsb_release -a //3、查看系统位数 getconf LONG_BIT1.2 截图 二、设置CentOS7.9 2009 防火墙配置放开端口 2.1 命令汇总 //禁止防火墙开机启动。这种方法方…...

前端css高级

day08-CSS高级 目标:掌握定位的作用及特点;掌握 CSS 高级技巧 01-定位 作用:灵活的改变盒子在网页中的位置 实现: 1.定位模式:position 2.边偏移:设置盒子的位置 leftrighttopbottom 相对定位 posit…...

华为OD真题--字符串中最小的整数和--带答案

1. 华为OD机考题 答案 2023华为OD统一考试(AB卷)题库清单-带答案(持续更新) 2023年华为OD真题机考题库大全-带答案(持续更新) 2. 面试题 一手真实java面试题:2023年各大公司java面试真题汇总--…...

9月30日生效:微软官方服务协议更新,防止人工智能进行逆向工程

微软最近更新了其官方服务协议,新规则将于9月30日生效,包括多个新增和变化,具体细节请参考最新的微软服务协议。 微软最新更新涉及使用Bing Chat聊天机器人、Windows Copilot和Microsoft 365 Copilot服务,引起了广泛关注。这次更新…...

HarmonyOS教育类APP项目实战系列课结课考试答案(1-10讲)80分就合格

王丹辉(第一讲):HarmonyOS教育类APP项目实战开课及低代码初体验 结课考试 及格分80/ 满分100 评价 判断题 1. DevEco Studio不能同时支持HarmonyOS和OpenHarmony应用/服务开发 正确(True)错误(False) 回答正确 2. DevEco Studio…...

为什么要学习Oracle技术?

为什么要学习Oracle技术? 众所周知,Oracle占据着企业数据库领域超过48.1%的市场份额,成为高端企业数据库软件的绝对领导者。随着时间的推移,企业数据库的规模不断扩大,富有经验的资深OracleDBA越来越受到企业的欢迎。我们从著名的…...

ffmpeg+intel核显实现硬解码

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、前言二、检查方法1.图形法2.nvidia-smi3.intel-gpu-tools 三、安装使用1.libva-dev2.libva-utils3.编译安装4.测试1.vainfo2.ffmpeg测试解码 总结 前言 之…...

电脑开机出现Boot Device怎么办?

开机出现Boot Device这个问题很常见,有时还会出现No Boot Device的问题,虽然多了一个单词,但意思是相同的,这些问题说明你的系统盘出现了问题,或者是引导出现了问题。这该如何解决呢? 方法1. 检查主板或硬盘…...

面试题. 一次编辑

字符串有三种编辑操作:插入一个英文字符、删除一个英文字符或者替换一个英文字符。 给定两个字符串,编写一个函数判定它们是否只需要一次(或者零次)编辑。 示例 1: 输入: first "pale" second "ple" 输出: True 示例 2: 输入: first &…...

Unity悬浮显示提示内容

在编写unity时,需要实现鼠标在某一个按钮上时,就显示其子物体中对应的下拉菜单,为此编写了一个公共类,对于需要悬浮显示的控件均可挂载此类。代码如下: using UnityEngine; using UnityEngine.EventSystems; using Un…...

变形金刚在图像识别方面比CNN更好吗?

链接到文 — https://arxiv.org/pdf/2010.11929.pdf 一、说明 如今,在自然语言处理(NLP)任务中,转换器已成为goto架构(例如BERT,GPT-3等)。另一方面,变压器在计算机视觉任务中的使用…...

【Javascript】ES6新增之类的认识

在现代编程语言中,类是面向对象编程范式中的核心概念之一。 与函数类似,类本质上是一种特殊的函数,它允许我们将数据和操作封装在一起,以创建具有共同行为和状态的对象。 在类的世界里,我们有类表达式和类声明&#xf…...

C#随机法 双峰函数 求极值 避免落入局部最优解

避免落入局部最优解,只要让步长够长即可。 x1 resultX1 random1.NextDouble()*100; 如果后面不乘以100,则很大概率落入负数的最大值 Random random1 new Random(DateTime.Now.Millisecond);double x1 0, resultX10,max-999999,maxTemp0;for (int i …...

JavaScript高级:常见设计模式

设计模式是在软件开发中重复出现的问题的解决方案,它们是经过验证的、被广泛接受的最佳实践。设计模式可以让我们避免重复造轮子,提高代码质量和可维护性。在本文中,我们将介绍几种常见的设计模式,以及它们的实现和应用。 1. 单例…...

32bit国产低功耗无线MCU芯片

超低功耗无线MCU芯片MS1642,集成了高性能的32位ARMCortex-M0内核,宽电压工作范围的MCU。嵌入高达64Kbytes高可靠Flash和8Kbytes SRAM存储器,最高工作频率32MHz。芯片集成多路I2C、USART等通讯外设,1路12bit ADC,5个16b…...

scope组件穿透

今天我们以单选框为例来探究一下样式的穿透问题 1.代码 <template><div class""><el-radio v-model"radio" label"1">备选项</el-radio><el-radio v-model"radio" label"2">备选项</el-r…...

分类预测 | Python实现LR逻辑回归多输入分类预测

分类预测 | Python实现LR逻辑回归多输入分类预测 目录 分类预测 | Python实现LR逻辑回归多输入分类预测基本介绍模型描述源码设计学习小结参考资料基本介绍 逻辑回归是一种广义线性的分类模型且其模型结构可以视为单层的神经网络,由一层输入层、一层仅带有一个sigmoid激活函数…...

【微信小程序】通过使用 wx.navigateTo方法进行页面跳转,跳转后的页面中通过一些方式回传值给原页面

以下是几种常见的回传值的方式&#xff1a; 使用 wx.navigateTo 方法传递参数&#xff1a; 在跳转时&#xff0c;可以在目标页面的 URL 中携带参数&#xff0c;然后在目标页面的 onLoad 方法中获取参数&#xff0c;并在目标页面中进行处理。例如&#xff1a; // 原页面跳转到目…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

高考志愿填报管理系统---开发介绍

高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发&#xff0c;采用现代化的Web技术&#xff0c;为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## &#x1f4cb; 系统概述 ### &#x1f3af; 系统定…...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP&#xff08;File Transfer Protocol&#xff09;本身是一个基于 TCP 的协议&#xff0c;理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况&#xff0c;主要原因包括&#xff1a; ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...

二维数组 行列混淆区分 js

二维数组定义 行 row&#xff1a;是“横着的一整行” 列 column&#xff1a;是“竖着的一整列” 在 JavaScript 里访问二维数组 grid[i][j] 表示 第i行第j列的元素 let grid [[1, 2, 3], // 第0行[4, 5, 6], // 第1行[7, 8, 9] // 第2行 ];// grid[i][j] 表示 第i行第j列的…...

解决MybatisPlus使用Druid1.2.11连接池查询PG数据库报Merge sql error的一种办法

目录 前言 一、问题重现 1、环境说明 2、重现步骤 3、错误信息 二、关于LATERAL 1、Lateral作用场景 2、在四至场景中使用 三、问题解决之道 1、源码追踪 2、关闭sql合并 3、改写处理SQL 四、总结 前言 在博客&#xff1a;【写在创作纪念日】基于SpringBoot和PostG…...