当前位置: 首页 > news >正文

P1123 取数游戏

取数游戏

题目描述

一个 N × M N\times M N×M 的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻 8 8 8 个格子中的一个即认为这两个数字相邻),求取出数字和最大是多少。

输入格式

第一行有一个正整数 T T T,表示了有 T T T 组数据。

对于每一组数据,第一行有两个正整数 N N N M M M,表示了数字矩阵为 N N N M M M 列。

接下来 N N N 行,每行 M M M 个非负整数,描述了这个数字矩阵。

输出格式

T T T 行,每行一个非负整数,输出所求得的答案。

样例 #1

样例输入 #1

3
4 4
67 75 63 10
29 29 92 14
21 68 71 56
8 67 91 25
2 3
87 70 85
10 3 17
3 3
1 1 1
1 99 1
1 1 1

样例输出 #1

271
172
99

提示

样例解释

对于第一组数据,取数方式如下:

[ 67 ] 75 63 10 29 29 [ 92 ] 14 [ 21 ] 68 71 56 8 67 [ 91 ] 25 \begin{matrix} [67] & 75 & 63 & 10 \\ 29 & 29 & [92] & 14 \\ [21] & 68 & 71 & 56 \\ 8 & 67 & [91] & 25 \\ \end{matrix} [67]29[21]87529686763[92]71[91]10145625

数据范围及约定

  • 对于 20 % 20\% 20%的数据, 1 ≤ N , ≤ 3 1\le N, \le 3 1N,3
  • 对于 40 % 40\% 40%的数据, 1 ≤ N , M ≤ 4 1\le N,M\le 4 1N,M4
  • 对于 60 % 60\% 60%的数据, 1 ≤ N , ≤ 5 1\le N, \le 5 1N,5
  • 对于 100 % 100\% 100%的数据, 1 ≤ N , M ≤ 6 1\le N, M\le 6 1N,M6 1 ≤ T ≤ 20 1\le T\le 20 1T20
  • 在这里插入图片描述
#include<bits/stdc++.h>
using namespace std;
int t,n,m,ans,maxn;
int a[37];
int vis[7][7];
void dfs(int x)
{if(x>=m*n){maxn=max(maxn,ans);return ;}dfs(x+1);if(vis[x/m+1][x%m+1]==0){ans+=a[x];for(int i=x/m;i<=x/m+2;i++){for(int j=x%m;j<=x%m+2;j++)vis[i][j]++;}dfs(x+1);ans-=a[x];for(int i=x/m;i<=x/m+2;i++){for(int j=x%m;j<=x%m+2;j++)vis[i][j]--;}}
}
int main()
{cin>>t;while(t--){cin>>n>>m;for(int i=0;i<n*m;i++)cin>>a[i];memset(vis,0,sizeof vis);dfs(0);cout<<maxn<<endl;maxn=0,ans=0;memset(a,0,sizeof a);}return 0;
}

相关文章:

P1123 取数游戏

取数游戏 题目描述 一个 N M N\times M NM 的由非负整数构成的数字矩阵&#xff0c;你需要在其中取出若干个数字&#xff0c;使得取出的任意两个数字不相邻&#xff08;若一个数字在另外一个数字相邻 8 8 8 个格子中的一个即认为这两个数字相邻&#xff09;&#xff0c;求…...

JavaScript高级:原型与原型链继承方式

在 JavaScript 中&#xff0c;继承是一种重要的概念&#xff0c;它使得对象可以从其他对象继承属性和方法&#xff0c;实现代码的重用和扩展。原型与原型链是 JavaScript 中实现继承的核心机制&#xff0c;虽然听起来有些高深&#xff0c;但我们可以通过通俗易懂的方式来理解它…...

使用vue-grid-layout时 You may need an appropriate loader to handle this file type.

使用vue-grid-layout时 You may need an appropriate loader to handle this file type. node版本不匹配 我的node v14.16.0 vue-gride-layout 需要用 v 2.3.7的版本 卸载后重新安装即可...

C# 2048小游戏核心算法

文章目录 01.程序结构划分02.去零03.合并04.上移05.下移/左移/右移&#xff0c;只是取数据的方向不同06.提高可读性 01.程序结构划分 02.去零 有序向量“唯一化”的思路。 /// <summary>/// 去零/// </summary>/// <param name"row">对于一行或一…...

设计模式(5)代理模式

一、介绍&#xff1a; 【Subject/抽象角色】定义了RealSubject和Proxy的共用接口&#xff0c;这样就可以在任何使用RealSubject的地方都可以使用Proxy 【RealSubject/真实角色】定义Proxy所代表的真实实体 【Proxy/代理角色】保存一个引用使得代理可以访问实体&#xff0c;并…...

Django配置(部署环境较乱,暂时启用)

django配置 web服务器中部署项目及WSGI简介 web服务器 WSGI 在IIS中部署django项目 安装 wfastcgi &#xff1a;pip install wfastcgi安装IIS&#xff1a; 以上选择项勾选后确定 将CGI文件复制到项目中&#xff0c; 将项目复制到IIS默认目录中 部署IIS 添加变量信息如下…...

【设计模式】桥接模式

桥接&#xff08;Bridge&#xff09;是用于把抽象化与实现化解耦&#xff0c;使得二者可以独立变化。这种类型的设计模式属于结构型模式&#xff0c;它通过提供抽象化和实现化之间的桥接结构&#xff0c;来实现二者的解耦。 这种模式涉及到一个作为桥接的接口&#xff0c;使得…...

ol问题总结二

一、加载坐标系是4326格式的&#xff0c;使用wfsServer发布的服务&#xff0c;图层加载失败&#xff1b;坐标系是3857格式的。图层加载正常 原因&#xff1a;4326格式的&#xff0c;发布出来的&#xff0c;经纬度是颠倒的 解决方案一&#xff1a;将经纬度进行反转 <templa…...

批量打印-----jsPDF将图片转为pdf,并合并pdf

安装依赖并引入 import jsPDF from jspdf; import { PDFDocument, } from pdf-lib;注意一、 使用jspdf将图片&#xff08;jpg/jpeg/png/bmp&#xff09;转pdf&#xff08;记为pdfA&#xff09;&#xff0c;得到的pdf&#xff08;pdfA&#xff09;和需要合并的pdf(记为pdfB)类…...

【Git】版本控制器详解之git的概念和基本使用

版本控制器git 初始Gitgit的安装git的基本使用初始化本地仓库配置本地仓库三区协作添加---add修改文件--status|diff版本回退--reset撤销修改删除文件 初始Git 为了能够更⽅便我们管理不同版本的⽂件&#xff0c;便有了版本控制器。所谓的版本控制器&#xff0c;就是⼀个可以记…...

C语言 棱形图案

目录 一、问题分析 上部分&#xff1a; 下部分&#xff1a; 二、代码演示 一、问题分析 如上图所示&#xff0c;我们可以将棱形进行拆解&#xff0c;分为上下两个部分。 上部分&#xff1a; 通过观察&#xff0c;我们得到 单边空格数 上半部分总行数 - 行数 - 1 …...

在idea使用GitHub账号、Copilot异常

登录GitHub显示这样的信息&#xff1a; Invalid authentication data.Connection refused: connect Failed to initiate the GitHub login process. Please try again. 修改hosts&#xff08;C:\Windows\System32\drivers\etc\hosts&#xff09;&#xff0c;添加以下参数即可…...

面试热题(反转字符串中的单词)

给你一个字符串 s &#xff0c;请你反转字符串中 单词 的顺序。 单词 是由非空格字符组成的字符串。s 中使用至少一个空格将字符串中的 单词 分隔开。 返回 单词 顺序颠倒且 单词 之间用单个空格连接的结果字符串。 注意&#xff1a;输入字符串 s中可能会存在前导空格、尾随空格…...

Stable Diffusion WebUI 从零基础到入门

本文主要介绍Stable Diffusion WebUI的实际操作方法&#xff0c;涵盖prompt推导、lora模型、vae模型和controlNet应用等内容&#xff0c;并给出了可操作的文生图、图生图实战示例。适合对Stable Diffusion感兴趣&#xff0c;但又对Stable Diffusion WebUI使用感到困惑的同学&am…...

【uniapp】一文读懂app端安装包升级

一、前言 首先&#xff0c;在app端开发上线的过程中&#xff0c;会面临一个问题&#xff0c;就是关于app端的版本升级的问题。如果不做相关处理来引导用户的话&#xff0c;那么app就会出现版本没有更新出现的各种问题&#xff0c;我们常见的有在线升级和去指定地址下载安装两种…...

【算法题】2518. 好分区的数目

题目&#xff1a; 给你一个正整数数组 nums 和一个整数 k 。 分区 的定义是&#xff1a;将数组划分成两个有序的 组 &#xff0c;并满足每个元素 恰好 存在于 某一个 组中。如果分区中每个组的元素和都大于等于 k &#xff0c;则认为分区是一个好分区。 返回 不同 的好分区的…...

编写守护进程

守护进程是一个后台进程&#xff0c;当操作系统启动时就可以运行的进程&#xff0c;当操作系统结束时结束的进程&#xff0c;与终端无关。 结果 不想要了就杀死...

stable-diffusion-webui启动No Python at ‘C:\xxx\xxx\python.exe‘

打开webui.bat 把 if not defined VENV_DIR (set "VENV_DIR%~dp0%venv") 中的%~dp0venv改成自己python的安装路径就行获取直接set值即可 如 set VENV_DIRD:\Users\xxx\AppData\Local\Programs\Python\Python310 另外就是直接运行webui-user.bat也可以 如果运行…...

面试热题(合并两个有序列表)

将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 合并链表这类型题也是比较经典的题了&#xff0c;因为链表是由指针相互指向而确定位置&#xff0c;所以我们只需要改变某些节点的指针便可以做到对链表进行排序 今天这个方法…...

QT生成Word PDF文档

需求&#xff1a;将软件处理的结果保存为一个报告文档&#xff0c;文档中包含表格、图片、文字&#xff0c;格式为word的.doc和.pdf。生成word是为了便于用户编辑。 开发环境&#xff1a;qt4.8.4vs2010 在qt的官网上对于pdf的操作介绍如下&#xff1a;http://qt-project.org/…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...