NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践
NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践
0 背景介绍以及相关概念
本项目对3种常用的文本匹配的方法进行实现:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)。
文本匹配(Text Matching)是 NLP 下的一个分支,通常用于计算两个句子之间的相似程度,在推荐、推理等场景下都有着重要的作用。
举例来讲,今天我们有一堆评论数据,我们想要找到指定类别的评论数据,例如:
1. 为什么是开过的洗发水都流出来了,是用过的吗?是这样子包装的吗?
2. 喜欢折叠手机的我对这款手机情有独钟,简洁的外观设计非常符合当代年轻人的口味,给携带增添了一份愉悦。
3. 物流很快,但是到货时有的水果已经不新鲜了,坏掉了,不满意本次购物。
...
在这一堆评论中我们想找到跟「水果」相关的评论,那么第 3 条评论就应该被召回。这个问题可以被建模为文本分类对吧,通过训练一个文本分类模型也能达到同样的目的。
但,分类模型的主要问题是:分类标签是固定的。假如在训练的时候标签集合是「洗浴,电脑,水果」,今天再来一条「服饰」的评论,那么模型依旧只能在原有的标签集合里面进行推理,无论推到哪个都是错误的。因此,我们需要一个能够有一定自适应能力的模型,在加入一些新标签后不用重训模型也能很好的完成任务。
文本匹配目前比较常用的有两种结构:
-
单塔模型:准确率高,但计算速度慢。
-
双塔模型:计算速度快,准确率相对低一些。
下面我们对这两种方法分别进行介绍。
0.1 单塔模型
单塔模型顾名思义,是指在整个过程中只进行一次模型计算。这里的「塔」指的是进行「几次模型计算」,而不一定是「模型个数」,这个我们会放到双塔部分解释。在单塔模型下,我们需要把两句文本通过 [SEP] 进行拼接,将拼接好的数据喂给模型,通过 output 中的[CLS] token 做一个二分类任务。
单塔模型的 forward 部分长这样,完整源码在文末:
def __init__(self, encoder, dropout=None):"""init func.Args:encoder (transformers.AutoModel): backbone, 默认使用 ernie 3.0dropout (float): dropout 比例"""super().__init__()self.encoder = encoderhidden_size = 768self.dropout = nn.Dropout(dropout if dropout is not None else 0.1)self.classifier = nn.Linear(768, 2)def forward(self,input_ids,token_type_ids,position_ids=None,attention_mask=None) -> torch.tensor:"""Foward 函数,输入匹配好的pair对,返回二维向量(相似/不相似)。Args:input_ids (torch.LongTensor): (batch, seq_len)token_type_ids (torch.LongTensor): (batch, seq_len)position_ids (torch.LongTensor): (batch, seq_len)attention_mask (torch.LongTensor): (batch, seq_len)Returns:torch.tensor: (batch, 2)"""pooled_embedding = self.encoder(input_ids=input_ids,token_type_ids=token_type_ids,position_ids=position_ids,attention_mask=attention_mask)["pooler_output"] # (batch, hidden_size)pooled_embedding = self.dropout(pooled_embedding) # (batch, hidden_size)logits = self.classifier(pooled_embedding) # (batch, 2)return logits
单塔模型的优势在于准确率较高,但缺点在于:计算慢。
- 为什么慢呢?
举例来讲,如果今天我们有三个类别「电脑、水果、洗浴」,那我们就需要将一句话跟每个类别都做一次拼接,并喂给模型去做推理:
水果[SEP]苹果不是很新鲜,不满意这次购物[SEP]
电脑[SEP]苹果不是很新鲜,不满意这次购物[SEP]
洗浴[SEP]苹果不是很新鲜,不满意这次购物[SEP]
那如果类别数目到达成百上千时,就需要拼接上千次,为了判断一个样本就需要过上次模型,而大模型的计算通常来讲是非常耗时的,这就导致了在类别数目很大的情况下,单塔模型的效率往往无法满足人们的需求。
0.2 双塔模型
单塔模型的劣势很明显,有多少类别就需要算多少次。但事实上,这些类别都是不会变的,唯一变的只有新的评论数据。所以我们能不能实现将这些不会变的「类别信息」「提前计算」存下来,只计算那些没有见过的「评论数据」呢?这就是双塔模型的思想。双塔模型的「双塔」含义就是:两次模型计算。即,类别特征计算一次,评论特征计算一次。
通过上图可以看到,「类别」和「评论」不再是拼接在一起喂给模型,而是单独喂给模型,并分别得到各自的 embedding 向量,再进行后续的计算。而上图中左右两个两个模型可以使用同一个模型(这种方式叫:同构模型),也可以用两个不同的模型(这种方式叫:异构模型)。因此「双塔」并不一定代表存在两个模型,而是代表需要需要进行两次模型计算。
0.2.1 DSSM(Deep Structured Semantic Models,深度结构化语义模型)
Paper Reference: https://posenhuang.github.io/papers/cikm2013_DSSM_fullversion.pdf
DSSM 是一篇比较早期的 paper,我们主要借鉴其通过 embedding 之间的余弦相似度进行召回排序的思想。我们分别将「类别」和「评论」文本过一遍模型,并得到两段文本的 embedding。将匹配的 pair 之间的余弦相似度 label 置为 1,不匹配的 pair 之间余弦相似度 label 置为 0。
Note: 余弦相似度的取值范围是 [-1, 1],但为了方便我将 label 置为 0 并用 MSE 去训练,也能取得不错的效果。
训练数据集长这样,匹配 pair 标签为 1,不匹配为 0:
蒙牛 不错还好挺不错 0
蒙牛 我喜欢demom制造的蒙牛奶 1
衣服 裤子太差了,刚穿一次屁股就起毛了。 1
...
实现中有两个关键函数:获得句子的 embedding 函数(用于推理)、获得句子对的余弦相似度(用于训练):
def forward(self,input_ids: torch.tensor,token_type_ids: torch.tensor,attention_mask: torch.tensor) -> torch.tensor:"""forward 函数,输入单句子,获得单句子的embedding。Args:input_ids (torch.LongTensor): (batch, seq_len)token_type_ids (torch.LongTensor): (batch, seq_len)attention_mask (torch.LongTensor): (batch, seq_len)Returns:torch.tensor: embedding -> (batch, hidden_size)"""embedding = self.encoder(input_ids=input_ids,token_type_ids=token_type_ids,attention_mask=attention_mask)["pooler_output"] # (batch, hidden_size)return embeddingdef get_similarity(self,query_input_ids: torch.tensor,query_token_type_ids: torch.tensor,query_attention_mask: torch.tensor,doc_input_ids: torch.tensor,doc_token_type_ids: torch.tensor,doc_attention_mask: torch.tensor) -> torch.tensor:"""输入query和doc的向量,返回query和doc两个向量的余弦相似度。Args:query_input_ids (torch.LongTensor): (batch, seq_len)query_token_type_ids (torch.LongTensor): (batch, seq_len)query_attention_mask (torch.LongTensor): (batch, seq_len)doc_input_ids (torch.LongTensor): (batch, seq_len)doc_token_type_ids (torch.LongTensor): (batch, seq_len)doc_attention_mask (torch.LongTensor): (batch, seq_len)Returns:torch.tensor: (batch, 1)"""query_embedding = self.encoder(input_ids=query_input_ids,token_type_ids=query_token_type_ids,attention_mask=query_attention_mask)["pooler_output"] # (batch, hidden_size)query_embedding = self.dropout(query_embedding)doc_embedding = self.encoder(input_ids=doc_input_ids,token_type_ids=doc_token_type_ids,attention_mask=doc_attention_mask)["pooler_output"] # (batch, hidden_size)doc_embedding = self.dropout(doc_embedding)similarity = nn.functional.cosine_similarity(query_embedding, doc_embedding)return similarity
0.2.2 Sentence Transformer
Paper Reference:https://arxiv.org/pdf/1908.10084.pdf
Sentence Transformer 也是一个双塔模型,只是在训练时不直接对两个句子的 embedding 算余弦相似度,而是将这两个 embedding 和 embedding 之间的差向量进行拼接,将这三个向量拼好后喂给一个判别层做二分类任务。
原 paper 中在 inference 的时候不再使用训练架构,而是采用了余弦相似度的方法做召回。但我在实现的时候在推理部分仍然沿用了训练的模型架构,原因是想抹除结构不一致的 gap,并且训练层也只是多了一层 Linear 层,在推理的时候也不至于消耗过多的时间。Sentence Transformer 在推理时需要同时传入「当前评论信息」以及事先计算好的「所有类别 embedding」,如下:
def forward(self,query_input_ids: torch.tensor,query_token_type_ids: torch.tensor,query_attention_mask: torch.tensor,doc_embeddings: torch.tensor,) -> torch.tensor:"""forward 函数,输入query句子和doc_embedding向量,将query句子过一遍模型得到query embedding再和doc_embedding做二分类。Args:input_ids (torch.LongTensor): (batch, seq_len)token_type_ids (torch.LongTensor): (batch, seq_len)attention_mask (torch.LongTensor): (batch, seq_len)doc_embedding (torch.LongTensor): 所有需要匹配的doc_embedding -> (batch, doc_embedding_numbers, hidden_size)Returns:torch.tensor: embedding_match_logits -> (batch, doc_embedding_numbers, 2)"""query_embedding = self.encoder(input_ids=query_input_ids,token_type_ids=query_token_type_ids,attention_mask=query_attention_mask)["last_hidden_state"] # (batch, seq_len, hidden_size)query_attention_mask = torch.unsqueeze(query_attention_mask, dim=-1) # (batch, seq_len, 1)query_embedding = query_embedding * query_attention_mask # (batch, seq_len, hidden_size)query_sum_embedding = torch.sum(query_embedding, dim=1) # (batch, hidden_size)query_sum_mask = torch.sum(query_attention_mask, dim=1) # (batch, 1)query_mean = query_sum_embedding / query_sum_mask # (batch, hidden_size)query_mean = query_mean.unsqueeze(dim=1).repeat(1, doc_embeddings.size()[1], 1) # (batch, doc_embedding_numbers, hidden_size)sub = torch.abs(torch.subtract(query_mean, doc_embeddings)) # (batch, doc_embedding_numbers, hidden_size)concat = torch.cat([query_mean, doc_embeddings, sub], dim=-1) # (batch, doc_embedding_numbers, hidden_size * 3)logits = self.classifier(concat) # (batch, doc_embedding_numbers, 2)return logits
1. 环境安装
本项目基于 pytorch
+ transformers
实现,运行前请安装相关依赖包:
pip install -r ../../requirements.txttorch
transformers==4.22.1
datasets==2.4.0
evaluate==0.2.2
matplotlib==3.6.0
rich==12.5.1
scikit-learn==1.1.2
requests==2.28.1
2. 数据集准备
项目中提供了一部分示例数据,我们使用「商品评论」和「商品类别」来进行文本匹配任务,数据在 data/comment_classify
。
若想使用自定义数据
训练,只需要仿照示例数据构建数据集即可:
衣服:指穿在身上遮体御寒并起美化作用的物品。 为什么是开过的洗发水都流出来了、是用过的吗?是这样子包装的吗? 0
衣服:指穿在身上遮体御寒并起美化作用的物品。 开始买回来大很多 后来换了回来又小了 号码区别太不正规 建议各位谨慎 1
...
每一行用 \t
分隔符分开,第一部分部分为商品类型(text1)
,中间部分为商品评论(text2)
,最后一部分为商品评论和商品类型是否一致(label)
。
3. 有监督-模型训练
3.1 PointWise(单塔)
3.1.1 模型训练
修改训练脚本 train_pointwise.sh
里的对应参数, 开启模型训练:
python train_pointwise.py \--model "nghuyong/ernie-3.0-base-zh" \ # backbone--train_path "data/comment_classify/train.txt" \ # 训练集--dev_path "data/comment_classify/dev.txt" \ #验证集--save_dir "checkpoints/comment_classify" \ # 训练模型存放地址--img_log_dir "logs/comment_classify" \ # loss曲线图保存位置--img_log_name "ERNIE-PointWise" \ # loss曲线图保存文件夹--batch_size 8 \--max_seq_len 128 \--valid_steps 50 \--logging_steps 10 \--num_train_epochs 10 \--device "cuda:0"
正确开启训练后,终端会打印以下信息:
...
global step 10, epoch: 1, loss: 0.77517, speed: 3.43 step/s
global step 20, epoch: 1, loss: 0.67356, speed: 4.15 step/s
global step 30, epoch: 1, loss: 0.53567, speed: 4.15 step/s
global step 40, epoch: 1, loss: 0.47579, speed: 4.15 step/s
global step 50, epoch: 2, loss: 0.43162, speed: 4.41 step/s
Evaluation precision: 0.88571, recall: 0.87736, F1: 0.88152
best F1 performence has been updated: 0.00000 --> 0.88152
global step 60, epoch: 2, loss: 0.40301, speed: 4.08 step/s
global step 70, epoch: 2, loss: 0.37792, speed: 4.03 step/s
global step 80, epoch: 2, loss: 0.35343, speed: 4.04 step/s
global step 90, epoch: 2, loss: 0.33623, speed: 4.23 step/s
global step 100, epoch: 3, loss: 0.31319, speed: 4.01 step/s
Evaluation precision: 0.96970, recall: 0.90566, F1: 0.93659
best F1 performence has been updated: 0.88152 --> 0.93659
...
在 logs/comment_classify
文件下将会保存训练曲线图:
3.1.2 模型推理
完成模型训练后,运行 inference_pointwise.py
以加载训练好的模型并应用:
...test_inference('手机:一种可以在较广范围内使用的便携式电话终端。', # 第一句话'味道非常好,京东送货速度也非常快,特别满意。', # 第二句话max_seq_len=128)
...
运行推理程序:
python inference_pointwise.py
得到以下推理结果:
tensor([[ 1.8477, -2.0484]], device='cuda:0') # 两句话不相似(0)的概率更大
3.2 DSSM(双塔)
3.2.1 模型训练
修改训练脚本 train_dssm.sh
里的对应参数, 开启模型训练:
python train_dssm.py \--model "nghuyong/ernie-3.0-base-zh" \--train_path "data/comment_classify/train.txt" \--dev_path "data/comment_classify/dev.txt" \--save_dir "checkpoints/comment_classify/dssm" \--img_log_dir "logs/comment_classify" \--img_log_name "ERNIE-DSSM" \--batch_size 8 \--max_seq_len 256 \--valid_steps 50 \--logging_steps 10 \--num_train_epochs 10 \--device "cuda:0"
正确开启训练后,终端会打印以下信息:
...
global step 0, epoch: 1, loss: 0.62319, speed: 15.16 step/s
Evaluation precision: 0.29912, recall: 0.96226, F1: 0.45638
best F1 performence has been updated: 0.00000 --> 0.45638
global step 10, epoch: 1, loss: 0.40931, speed: 3.64 step/s
global step 20, epoch: 1, loss: 0.36969, speed: 3.69 step/s
global step 30, epoch: 1, loss: 0.33927, speed: 3.69 step/s
global step 40, epoch: 1, loss: 0.31732, speed: 3.70 step/s
global step 50, epoch: 1, loss: 0.30996, speed: 3.68 step/s
...
在 logs/comment_classify
文件下将会保存训练曲线图:
3.2.2 模型推理
和单塔模型不一样的是,双塔模型可以事先计算所有候选类别的Embedding,当新来一个句子时,只需计算新句子的Embedding,并通过余弦相似度找到最优解即可。
因此,在推理之前,我们需要提前计算所有类别的Embedding并保存。
类别Embedding计算
运行 get_embedding.py
文件以计算对应类别embedding并存放到本地:
...
text_file = 'data/comment_classify/types_desc.txt' # 候选文本存放地址
output_file = 'embeddings/comment_classify/dssm_type_embeddings.json' # embedding存放地址device = 'cuda:0' # 指定GPU设备
model_type = 'dssm' # 使用DSSM还是Sentence Transformer
saved_model_path = './checkpoints/comment_classify/dssm/model_best/' # 训练模型存放地址
tokenizer = AutoTokenizer.from_pretrained(saved_model_path)
model = torch.load(os.path.join(saved_model_path, 'model.pt'))
model.to(device).eval()
...
其中,所有需要预先计算的内容都存放在 types_desc.txt
文件中。
文件用 \t
分隔,分别代表 类别id
、类别名称
、类别描述
:
0 水果 指多汁且主要味觉为甜味和酸味,可食用的植物果实。
1 洗浴 洗浴用品。
2 平板 也叫便携式电脑,是一种小型、方便携带的个人电脑,以触摸屏作为基本的输入设备。
...
执行 python get_embeddings.py
命令后,会在代码中设置的embedding存放地址中找到对应的embedding文件:
{"0": {"label": "水果", "text": "水果:指多汁且主要味觉为甜味和酸味,可食用的植物果实。", "embedding": [0.3363891839981079, -0.8757723569869995, -0.4140555262565613, 0.8288457989692688, -0.8255823850631714, 0.9906797409057617, -0.9985526204109192, 0.9907819032669067, -0.9326567649841309, -0.9372553825378418, 0.11966298520565033, -0.7452883720397949,...]},"1": ...,...
}
模型推理
完成预计算后,接下来就可以开始推理了。
我们构建一条新评论:这个破笔记本卡的不要不要的,差评
。
运行 python inference_dssm.py
,得到下面结果:
[('平板', 0.9515482187271118),('电脑', 0.8216977119445801),('洗浴', 0.12220608443021774),('衣服', 0.1199738010764122),('手机', 0.07764233648777008),('酒店', 0.044791921973228455),('水果', -0.050112202763557434),('电器', -0.07554933428764343),('书籍', -0.08481660485267639),('蒙牛', -0.16164332628250122)
]
函数将输出(类别,余弦相似度)的二元组,并按照相似度做倒排(相似度取值范围:[-1, 1])。
3.3 Sentence Transformer(双塔)
3.3.1 模型训练
修改训练脚本 train_sentence_transformer.sh
里的对应参数, 开启模型训练:
python train_sentence_transformer.py \--model "nghuyong/ernie-3.0-base-zh" \--train_path "data/comment_classify/train.txt" \--dev_path "data/comment_classify/dev.txt" \--save_dir "checkpoints/comment_classify/sentence_transformer" \--img_log_dir "logs/comment_classify" \--img_log_name "Sentence-Ernie" \--batch_size 8 \--max_seq_len 256 \--valid_steps 50 \--logging_steps 10 \--num_train_epochs 10 \--device "cuda:0"
正确开启训练后,终端会打印以下信息:
...
Evaluation precision: 0.81928, recall: 0.64151, F1: 0.71958
best F1 performence has been updated: 0.46120 --> 0.71958
global step 260, epoch: 2, loss: 0.58730, speed: 3.53 step/s
global step 270, epoch: 2, loss: 0.58171, speed: 3.55 step/s
global step 280, epoch: 2, loss: 0.57529, speed: 3.48 step/s
global step 290, epoch: 2, loss: 0.56687, speed: 3.55 step/s
global step 300, epoch: 2, loss: 0.56033, speed: 3.55 step/s
...
在 logs/comment_classify
文件下将会保存训练曲线图:
3.2.2 模型推理
Sentence Transformer 同样也是双塔模型,因此我们需要事先计算所有候选文本的embedding值。
类别Embedding计算
运行 get_embedding.py
文件以计算对应类别embedding并存放到本地:
...
text_file = 'data/comment_classify/types_desc.txt' # 候选文本存放地址
output_file = 'embeddings/comment_classify/sentence_transformer_type_embeddings.json' # embedding存放地址device = 'cuda:0' # 指定GPU设备
model_type = 'sentence_transformer' # 使用DSSM还是Sentence Transformer
saved_model_path = './checkpoints/comment_classify/sentence_transformer/model_best/' # 训练模型存放地址
tokenizer = AutoTokenizer.from_pretrained(saved_model_path)
model = torch.load(os.path.join(saved_model_path, 'model.pt'))
model.to(device).eval()
...
其中,所有需要预先计算的内容都存放在 types_desc.txt
文件中。
文件用 \t
分隔,分别代表 类别id
、类别名称
、类别描述
:
0 水果 指多汁且主要味觉为甜味和酸味,可食用的植物果实。
1 洗浴 洗浴用品。
2 平板 也叫便携式电脑,是一种小型、方便携带的个人电脑,以触摸屏作为基本的输入设备。
...
执行 python get_embeddings.py
命令后,会在代码中设置的embedding存放地址中找到对应的embedding文件:
{"0": {"label": "水果", "text": "水果:指多汁且主要味觉为甜味和酸味,可食用的植物果实。", "embedding": [0.32447007298469543, -1.0908259153366089, -0.14340722560882568, 0.058471400290727615, -0.33798110485076904, -0.050156619399785995, 0.041511114686727524, 0.671889066696167, 0.2313404232263565, 1.3200652599334717, -1.10829496383667, 0.4710233509540558, -0.08577515184879303, -0.41730815172195435, -0.1956728845834732, 0.05548520386219025, ...]}"1": ...,...
}
模型推理
完成预计算后,接下来就可以开始推理了。
我们构建一条新评论:这个破笔记本卡的不要不要的,差评
。
运行 python inference_sentence_transformer.py
,函数会输出所有类别里「匹配通过」的类别及其匹配值,得到下面结果:
Used 0.5233056545257568s.
[('平板', 1.136274814605713), ('电脑', 0.8851938247680664)
]
函数将输出(匹配通过的类别,匹配值)的二元组,并按照匹配值(越大则越匹配)做倒排。
参考链接:https://github.com/HarderThenHarder/transformers_tasks/blob/main/text_matching/supervised
github无法连接的可以在:https://download.csdn.net/download/sinat_39620217/88214437 下载
更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。
相关文章:

NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践
NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践 0 背景介绍以及相关概念 本项目对3种常用的文本匹配的方法进行实现:Poin…...
2023牛客第八场补题报告A H J K
2023牛客第八场补题报告A H J K A-Alive Fossils_2023牛客暑期多校训练营8 (nowcoder.com) 思路 统计字符串,取出现次数为t的。 代码 #include <bits/stdc.h> #define int long long #define endl \n #define IOS ios::sync_with_stdio(0), cin.tie(0), …...

KubeSphere 部署 Zookeeper 实战教程
前言 知识点 定级:入门级如何利用 AI 助手辅助运维工作单节点 Zookeeper 安装部署集群模式 Zookeeper 安装部署开源应用选型思想 实战服务器配置(架构 1:1 复刻小规模生产环境,配置略有不同) 主机名IPCPU内存系统盘数据盘用途ks-master-0192.168.9.9…...

麦肯锡重磅发布2023年15项技术趋势,生成式AI首次入选,选对了就是风口
两位朋友在不同群里分享了同一份深度报告。 一位是LH美女,她在“AIGC时代”群里上传了这份文档,响应寥寥,可能是因为这些报告没有像八卦文那样容易带来冲击。 你看韩彬的这篇《金融妲己:基金公司女销售的瓜,一个比一个…...

【软件工程质量】代码质量管理平台Sonar
分析代码质量的工具有挺多的,比如:Alibaba Java Coding Guidelines plugin、QAPlug、SonarQube 等,平时用的比较多的事Alibaba Java Coding Guidelines plugin和sonarlint。 SonarQube 是一个用于管理源码质量的平台,帮助开发者…...

【EI/SCOPUS检索】第三届计算机视觉、应用与算法国际学术会议(CVAA 2023)
第三届计算机视觉、应用与算法国际学术会议(CVAA 2023) The 3rd International Conference on Computer Vision, Application and Algorithm 2023年第三届计算机视觉、应用与算法国际学术会议(CVAA 2023)主要围绕计算机视觉、计算机应用、计…...

crm客户管理系统的功能有哪些?
阅读本文,您可以了解:1、CRM客户管理系统的定义;2、CRM客户管理系统的功能。 CRM客户管理系统是一个工具或软件,能够帮助企业更好地与客户进行沟通、理解客户需求,以及有效地处理客户信息和互动。通俗地说,…...

leetcode 面试题 02.05 链表求和
⭐️ 题目描述 🌟 leetcode链接:面试题 02.05 链表求和 ps: 首先定义一个头尾指针 head 、tail,这里的 tail 是方便我们尾插,每次不需要遍历找尾,由于这些数是反向存在的,所以我们直接加起来若…...

培训报名小程序-用户注册
目录 1 创建数据源2 注册用户3 判断用户是否注册4 完整代码总结 我们的培训报名小程序,用户每次打开时都需要填写个人信息才可以报名,如果用户多次报名课程,每次都需要填写个人信息,比较麻烦。 本篇我们就优化一下功能,…...
java八股文之基本语法
目录 注释有几种形式 1.注释有几种形式 单行注释: 通常用于 解释 代码内某单行得作用 多行注释:通常用于接收某个方法得作用文档注释:通常用于生成 Java 开发文档。 标识符和关键字得区别 标识符:由字母,…...

java不支持发行版本5
这篇文章主要给大家介绍了关于如何解决java错误:不支持发行版本5的相关资料,发行版本5是Java5,已经是十多年前的版本了,现在已经不再被支持,需要的朋友可以参考下 − 目录 问题描述:解决方法:永久解决方法:总结 问题描述: 在i…...

旧版本docker未及时更新,导致更新/etc/docker/daemon.json配置文件出现docker重启失败
一、背景 安装完docker和containerd之后,尝试重启docker的时候,报错如下: systemctl restart dockerJob for docker.service failed because the control process exited with error code. See “systemctl status docker.service” and “…...
HTML 语言简介
1.概述 HTML 是网页使用的语言,定义了网页的结构和内容。浏览器访问网站,其实就是从服务器下载 HTML 代码,然后渲染出网页。 HTML 的全名是“超文本标记语言”(HyperText Markup Language),上个世纪90年代…...

免费网站客服机器人来了(基于有限状态机),快来体验下
免费网站客服机器人来了,快来体验下 51jiqiren.cn 五分钟就可以完成一个简单的机器人. 懂json的同学可以自定义状态和状态跳转,完成复杂的业务流程. 更多功能还在开发中. 网站右下角点"联系客服"截图: 弹出来了: 后端管理界面: 有限状态机界面: 数据界面: 在网站…...

基于Spring Boot的高校在线考试系统的设计与实现(Java+spring boot+VUE+MySQL)
获取源码或者论文请私信博主 演示视频: 基于Spring Boot的高校在线考试系统的设计与实现(Javaspring bootVUEMySQL) 使用技术: 前端:html css javascript jQuery ajax thymeleaf 微信小程序 后端:Java s…...

vscode里面报:‘xxx‘ is assigned a value but never used.解决办法
const setCurPage: React.Dispatch<React.SetStateAction<number>> 已声明“setCurPage”,但从未读取其值。ts(6133) setCurPage is assigned a value but never used.eslinttypescript-eslint/no-unused-vars 出现这个报错是eslint导致的࿰…...

每日一题 25K个一组翻转链表
题目 给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。 k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序。 你不能只是单纯的改变节点内…...

NuGet包离线安装方法
在某项情况下,我们的计算机是无法直接连接外网的,这个时候就只能用离线安装的方法了。 一、直接区NUGET.org网页下载: 二、先下载nuget.exe工具,然后用这个工具下载 把下载的nuget.exe放在任意目录下,然后在此目录用…...

网络安全 Day31-运维安全项目-容器架构下
容器架构下 6. Dockerfile6.1 Docker自动化DIY镜像之Dockerfile1) 环境准备2) 书写Dockerfile内容3) 运行Dockerfile生成镜像4) 运行容器5) 小结 6.2 案例14:Dockerfile-RUN指令1) 书写Dockerfile2) 构建镜像3) 启动容器4) 测试结果 6.3 Dockerfile指令 …...

如何给a-table增加列宽拖动功能
对于table的列宽设置 相信用过的人都知道,想要设置得很完美,几乎是不现实的,因为总有数据或长或短,那我们应该如何优化它呢?那便是让用户自行拖动列宽,从而能看全table的数据,但是对于antd-vue …...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...

【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...

解析“道作为序位生成器”的核心原理
解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制,重点解析"道作为序位生成器"的核心原理与实现框架: 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...