当前位置: 首页 > news >正文

算法与数据结构-哈希算法

文章目录

  • 什么是哈希算法
  • 哈希算法的应用
    • 安全加密
    • 唯一标识
    • 数据校验
    • 散列函数
    • 负载均衡
    • 数据分片
    • 分布式存储
  • 一致性哈希算法


什么是哈希算法

哈希算法的定义和原理非常简单,基本上一句话就可以概括了。将任意长度的二进制值串映射为固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。但是,要想设计一个优秀的哈希算法并不容易,至少需要满足的几点要求:

  • 从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法);
  • 对输入数据非常敏感,哪怕原始数据只修改了一个 Bit,最后得到的哈希值也大不相同;
  • 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小;
  • 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速地计算出哈希值。

哈希算法的应用

哈希算法的应用非常非常多,我选了最常见的七个,分别是安全加密、唯一标识、数据校验、散列函数、负载均衡、数据分片、分布式存储。

安全加密

说到哈希算法的应用,最先想到的应该就是安全加密。最常用于加密的哈希算法是 MD5(MD5 Message-Digest Algorithm,MD5 消息摘要算法)和 SHA(Secure Hash Algorithm,安全散列算法)。

除了这两个之外,当然还有很多其他加密算法,比如 DES(Data Encryption Standard,数据加密标准)、AES(Advanced Encryption Standard,高级加密标准)。

对用于加密的哈希算法来说,有两点格外重要。第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要很小。

第一点很好理解,加密的目的就是防止原始数据泄露,所以很难通过哈希值反向推导原始数据,这是一个最基本的要求。所以我着重讲一下第二点。实际上,不管是什么哈希算法,我们只能尽量减少碰撞冲突的概率,理论上是没办法做到完全不冲突的。为什么这么说呢?

这里就基于组合数学中一个非常基础的理论,鸽巢原理(也叫抽屉原理)。这个原理本身很简单,它是说,如果有 10 个鸽巢,有 11 只鸽子,那肯定有 1 个鸽巢中的鸽子数量多于 1 个,换句话说就是,肯定有 2 只鸽子在 1 个鸽巢内。

我们知道,哈希算法产生的哈希值的长度是固定且有限的。比如前面举的 MD5 的例子,哈希值是固定的 128 位二进制串,能表示的数据是有限的,最多能表示 2128 个数据,而我们要哈希的数据是无穷的。基于鸽巢原理,如果我们对 2128+1 个数据求哈希值,就必然会存在哈希值相同的情况。这里你应该能想到,一般情况下,哈希值越长的哈希算法,散列冲突的概率越低。

不过,即便哈希算法存在散列冲突的情况,但是因为哈希值的范围很大,冲突的概率极低,所以相对来说还是很难破解的。像 MD5,有 2128 个不同的哈希值,这个数据已经是一个天文数字了,所以散列冲突的概率要小于 1/2128

如果我们拿到一个 MD5 哈希值,希望通过毫无规律的穷举的方法,找到跟这个 MD5 值相同的另一个数据,那耗费的时间应该是个天文数字。所以,即便哈希算法存在冲突,但是在有限的时间和资源下,哈希算法还是很难被破解的。

除此之外,没有绝对安全的加密。越复杂、越难破解的加密算法,需要的计算时间也越长。比如 SHA-256 比 SHA-1 要更复杂、更安全,相应的计算时间就会比较长。密码学界也一直致力于找到一种快速并且很难被破解的哈希算法。我们在实际的开发过程中,也需要权衡破解难度和计算时间,来决定究竟使用哪种加密算法。

唯一标识

如果要在海量的图库中,搜索一张图是否存在,我们不能单纯地用图片的元信息(比如图片名称)来比对,因为有可能存在名称相同但图片内容不同,或者名称不同图片内容相同的情况。那我们该如何搜索呢?

我们知道,任何文件在计算中都可以表示成二进制码串,所以,比较笨的办法就是,拿要查找的图片的二进制码串与图库中所有图片的二进制码串一一比对。如果相同,则说明图片在图库中存在。但是,每个图片小则几十 KB、大则几 MB,转化成二进制是一个非常长的串,比对起来非常耗时。有没有比较快的方法呢?

我们可以给每一个图片取一个唯一标识,或者说信息摘要。比如,我们可以从图片的二进制码串开头取 100 个字节,从中间取 100 个字节,从最后再取 100 个字节,然后将这 300 个字节放到一块,通过哈希算法(比如 MD5),得到一个哈希字符串,用它作为图片的唯一标识。通过这个唯一标识来判定图片是否在图库中,这样就可以减少很多工作量。

如果还想继续提高效率,我们可以把每个图片的唯一标识,和相应的图片文件在图库中的路径信息,都存储在散列表中。当要查看某个图片是不是在图库中的时候,我们先通过哈希算法对这个图片取唯一标识,然后在散列表中查找是否存在这个唯一标识。

如果不存在,那就说明这个图片不在图库中;如果存在,我们再通过散列表中存储的文件路径,获取到这个已经存在的图片,跟现在要插入的图片做全量的比对,看是否完全一样。如果一样,就说明已经存在;如果不一样,说明两张图片尽管唯一标识相同,但是并不是相同的图片。

数据校验

电驴这样的 BT 下载软件你肯定用过吧?我们知道,BT 下载的原理是基于 P2P 协议的。我们从多个机器上并行下载一个 2GB 的电影,这个电影文件可能会被分割成很多文件块(比如可以分成 100 块,每块大约 20MB)。等所有的文件块都下载完成之后,再组装成一个完整的电影文件就行了。

我们知道,网络传输是不安全的,下载的文件块有可能是被宿主机器恶意修改过的,又或者下载过程中出现了错误,所以下载的文件块可能不是完整的。如果我们没有能力检测这种恶意修改或者文件下载出错,就会导致最终合并后的电影无法观看,甚至导致电脑中毒。现在的问题是,如何来校验文件块的安全、正确、完整呢?

具体的 BT 协议很复杂,校验方法也有很多,我来说其中的一种思路。

我们通过哈希算法,对 100 个文件块分别取哈希值,并且保存在种子文件中。我们在前面讲过,哈希算法有一个特点,对数据很敏感。只要文件块的内容有一丁点儿的改变,最后计算出的哈希值就会完全不同。所以,当文件块下载完成之后,我们可以通过相同的哈希算法,对下载好的文件块逐一求哈希值,然后跟种子文件中保存的哈希值比对。如果不同,说明这个文件块不完整或者被篡改了,需要再重新从其他宿主机器上下载这个文件块。

散列函数

散列函数是设计一个散列表的关键。它直接决定了散列冲突的概率和散列表的性能。不过,相对哈希算法的其他应用,散列函数对于散列算法冲突的要求要低很多。即便出现个别散列冲突,只要不是过于严重,我们都可以通过开放寻址法或者链表法解决。

不仅如此,散列函数对于散列算法计算得到的值,是否能反向解密也并不关心。散列函数中用到的散列算法,更加关注散列后的值是否能平均分布,也就是,一组数据是否能均匀地散列在各个槽中。除此之外,散列函数执行的快慢,也会影响散列表的性能,所以,散列函数用的散列算法一般都比较简单,比较追求效率。

负载均衡

我们知道,负载均衡算法有很多,比如轮询、随机、加权轮询等。那如何才能实现一个会话粘滞(session sticky)的负载均衡算法呢?也就是说,我们需要在同一个客户端上,在一次会话中的所有请求都路由到同一个服务器上。

最直接的方法就是,维护一张映射关系表,这张表的内容是客户端 IP 地址或者会话 ID 与服务器编号的映射关系。客户端发出的每次请求,都要先在映射表中查找应该路由到的服务器编号,然后再请求编号对应的服务器。这种方法简单直观,但也有几个弊端:

  • 如果客户端很多,映射表可能会很大,比较浪费内存空间;
  • 客户端下线、上线,服务器扩容、缩容都会导致映射失效,这样维护映射表的成本就会很大;

如果借助哈希算法,这些问题都可以非常完美地解决。我们可以通过哈希算法,对客户端 IP 地址或者会话 ID 计算哈希值,将取得的哈希值与服务器列表的大小进行取模运算,最终得到的值就是应该被路由到的服务器编号。 这样,我们就可以把同一个 IP 过来的所有请求,都路由到同一个后端服务器上。

数据分片

假如我们有 1T 的日志文件,这里面记录了用户的搜索关键词,我们想要快速统计出每个关键词被搜索的次数,该怎么做呢?

我们来分析一下。这个问题有两个难点,第一个是搜索日志很大,没办法放到一台机器的内存中。第二个难点是,如果只用一台机器来处理这么巨大的数据,处理时间会很长。

针对这两个难点,我们可以先对数据进行分片,然后采用多台机器处理的方法,来提高处理速度。具体的思路是这样的:为了提高处理的速度,我们用 n 台机器并行处理。我们从搜索记录的日志文件中,依次读出每个搜索关键词,并且通过哈希函数计算哈希值,然后再跟 n 取模,最终得到的值,就是应该被分配到的机器编号。

这样,哈希值相同的搜索关键词就被分配到了同一个机器上。也就是说,同一个搜索关键词会被分配到同一个机器上。每个机器会分别计算关键词出现的次数,最后合并起来就是最终的结果。

分布式存储

现在互联网面对的都是海量的数据、海量的用户。我们为了提高数据的读取、写入能力,一般都采用分布式的方式来存储数据,比如分布式缓存。我们有海量的数据需要缓存,所以一个缓存机器肯定是不够的。于是,我们就需要将数据分布在多台机器上。

该如何决定将哪个数据放到哪个机器上呢?我们可以借用前面数据分片的思想,即通过哈希算法对数据取哈希值,然后对机器个数取模,这个最终值就是应该存储的缓存机器编号。

但是,如果数据增多,原来的 10 个机器已经无法承受了,我们就需要扩容了,比如扩到 11 个机器,这时候麻烦就来了。因为,这里并不是简单地加个机器就可以了。

原来的数据是通过与 10 来取模的。比如 13 这个数据,存储在编号为 3 这台机器上。但是新加了一台机器中,我们对数据按照 11 取模,原来 13 这个数据就被分配到 2 号这台机器上了。

在这里插入图片描述
因此,所有的数据都要重新计算哈希值,然后重新搬移到正确的机器上。这样就相当于,缓存中的数据一下子就都失效了。所有的数据请求都会穿透缓存,直接去请求数据库。这样就可能发生雪崩效应,压垮数据库。

所以,我们需要一种方法,使得在新加入一个机器后,并不需要做大量的数据搬移。这时候,一致性哈希算法就要登场了。

假设我们有 k 个机器,数据的哈希值的范围是[0, MAX]。我们将整个范围划分成 m 个小区间(m 远大于 k),每个机器负责 m/k 个小区间。当有新机器加入的时候,我们就将某几个小区间的数据,从原来的机器中搬移到新的机器中。这样,既不用全部重新哈希、搬移数据,也保持了各个机器上数据数量的均衡。

一致性哈希算法的基本思想就是这么简单。除此之外,它还会借助一个虚拟的环和虚拟结点,更加优美地实现出来。

一致性哈希算法

其实,一致性哈希算法也是使用取模的方法,只是,刚才描述的取模法是对服务器的数量进行取模,而一致性哈希算法是对232取模。当然,这里的232只是一个概数,可以理解为一个很大的区间。

首先,我们把二的三十二次方想象成一个圆,就像钟表一样,钟表的圆可以理解成由60个点组成的圆,而此处我们把这个圆想象成由232个点组成的圆。圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、5、6……直到232-1,也就是说0点左侧的第一个点代表232-1。我们把这个由2的32次方个点组成的圆环称为hash环。画图表示为:
在这里插入图片描述
假设我们有3台缓存服务器,服务器A、服务器B、服务器C,那么,在生产环境中,这三台服务器肯定有自己的IP地址,我们使用它们各自的IP地址进行哈希计算,使用哈希后的结果对2^32取模,可以使用如下公式示意:

hash(服务器AIP地址) %  2^32

通过上述公式算出的结果一定是一个0到232-1之间的一个整数,我们就用算出的这个整数,代表服务器A,既然这个整数肯定处于0到232-1之间,那么,上图中的hash环上必定有一个点与这个整数对应,而我们刚才已经说明,使用这个整数代表服务器A,那么,服务器A就可以映射到这个环上,用下图示意:
在这里插入图片描述
同理,服务器B与服务器C也可以通过相同的方法映射到上图中的hash环中。

hash(服务器BIP地址) %  2^32
hash(服务器BIP地址) %  2^32

在这里插入图片描述
假设,我们需要使用缓存服务器缓存图片,而且我们仍然使用图片的名称作为找到图片的key,那么我们使用如下公式可以将图片映射到上图中的hash环上,

hash(图片名称) %  2^32

映射后的示意图如下,下图中的橘黄色圆形表示图片:
在这里插入图片描述
好了,现在服务器与图片都被映射到了hash环上,那么上图中的这个图片到底应该被缓存到哪一台服务器上呢?上图中的图片将会被缓存到服务器A上,为什么呢?因为从图片的位置开始,沿顺时针方向遇到的第一个服务器就是A服务器,所以,上图中的图片将会被缓存到服务器A上,如下图所示
在这里插入图片描述
没错,一致性哈希算法就是通过这种方法,判断一个对象应该被缓存到哪台服务器上的,将缓存服务器与被缓存对象都映射到hash环上以后,从被缓存对象的位置出发,沿顺时针方向遇到的第一个服务器,就是当前对象将要缓存于的服务器,由于被缓存对象与服务器hash后的值是固定的,所以,在服务器不变的情况下,一张图片必定会被缓存到固定的服务器上,那么,当下次想要访问这张图片时,只要再次使用相同的算法进行计算,即可算出这个图片被缓存在哪个服务器上,直接去对应的服务器查找对应的图片即可。

但是在实际的映射中,服务器可能会被映射成如下模样:
在这里插入图片描述
聪明如你一定想到了,如果服务器被映射成上图中的模样,那么被缓存的对象很有可能大部分集中缓存在某一台服务器上,如下图所示:
在这里插入图片描述
上图中,1号、2号、3号、4号、6号图片均被缓存在了服务器A上,只有5号图片被缓存在了服务器B上,服务器C上甚至没有缓存任何图片,如果出现上图中的情况,A、B、C三台服务器并没有被合理的平均的充分利用,缓存分布的极度不均匀,而且,如果此时服务器A出现故障,那么失效缓存的数量也将达到最大值,在极端情况下,仍然有可能引起系统的崩溃,上图中的情况则被称之为hash环的偏斜,那么,我们应该怎样防止hash环的偏斜呢?

一致性hash算法中使用”虚拟节点”解决了这个问题。当hash环偏斜以后,缓存往往会极度不均衡的分布在各服务器上,聪明如你一定已经想到了,如果想要均衡的将缓存分布到3台服务器上,最好能让这3台服务器尽量多的、均匀的出现在hash环上,但是,真实的服务器资源只有3台,我们怎样凭空的让它们多起来呢,没错,就是凭空的让服务器节点多起来,既然没有多余的真正的物理服务器节点,我们就只能将现有的物理节点通过虚拟的方法复制出来,这些由实际节点虚拟复制而来的节点被称为”虚拟节点”。加入虚拟节点以后的hash环如下:
在这里插入图片描述
“虚拟节点”是”实际节点”(实际的物理服务器)在hash环上的复制品,一个实际节点可以对应多个虚拟节点。

从上图可以看出,A、B、C三台服务器分别虚拟出了一个虚拟节点,当然,如果你需要,也可以虚拟出更多的虚拟节点。引入虚拟节点的概念后,缓存的分布就均衡多了,上图中,1号、3号图片被缓存在服务器A中,5号、4号图片被缓存在服务器B中,6号、2号图片被缓存在服务器C中,如果你还不放心,可以虚拟出更多的虚拟节点,以便减小hash环偏斜所带来的影响,虚拟节点越多,hash环上的节点就越多,缓存被均匀分布的概率就越大。

该一致性算法摘抄自:https://www.zsythink.net/archives/1182

相关文章:

算法与数据结构-哈希算法

文章目录 什么是哈希算法哈希算法的应用安全加密唯一标识数据校验散列函数负载均衡数据分片分布式存储 一致性哈希算法 什么是哈希算法 哈希算法的定义和原理非常简单,基本上一句话就可以概括了。将任意长度的二进制值串映射为固定长度的二进制值串,这个…...

企业做直播时如何选择适合自己的直播平台?

企业做直播时如何选择适合自己的直播平台? 可以通过对比不同直播平台的技术能力、服务质量、安全性等方面的内容,选择最适合自己的直播平台。 企业做直播如何选择直播平台 我的文章推荐: [视频图文] 线上研讨会是什么,企业对内对…...

【JavaWeb】实训的长篇笔记(下)

文章目录 八、功能实现1、注册功能2、登录功能3、问题说明4、首页数据显示5、后台管理 八、功能实现 1、注册功能 jsp:能够在页面中把数据动态化,jsp和html在元素标签上是无区别的,区别是html中写上java代码就成了jsp文件。filename.jsp。 需…...

linux bash快捷键

1、^abc-^-123: 这个命令用于运行上一个命令,并将其中的"abc"替换为"123"。 示例:如果上一个命令是echo abc,则运行^abc-^-123后会执行命令echo 123。 2、!!: 这个命令用于重复执行上一条命令。 示例:如果上…...

KCC@广州开源读书会广州开源建设讨论会

亲爱的开源读书会朋友们, 在下个周末我们将举办一场令人激动的线下读书会,探讨两本引人入胜的新书《只是为了好玩》和《开源之迷》。作为一个致力于推广开源精神和技术创新的社区,这次我们还邀请了圈内大咖前来参与,会给大家提供一…...

搜文本搜位置搜图片,1小时玩转阿里云 Elasticsearch

作者:朱杰、奚悦、黄宇 AI 和搜索的整合已成为下一代搜索引擎的发展趋势,技术革新的浪潮下,你是否想抓住搜索领域的新机会,增强 AI 产品力与技术竞争力? 想学习搜索引擎技术的你,是否面临这样的困惑&…...

从三个主要需求市场分析,VR全景创业的潜力发展

VR全景,5G时代朝阳产业,其实拍摄制作很简单,就是利用一套专业的相机设备去给商家拍摄,结合后期专业的3DVR全景展示拍摄制作平台,打造3D立体环绕的效果,将线下商家真实环境1:1还原到线上&#xf…...

k8s 自身原理 2

前面我们说到 K8S 的基本原理和涉及的四大组件,分享了前两个组件 etcd 和 ApiServer 这一次我们接着分享一波: 调度器 scheduler控制器管理器 controller manager 调度器 scheduler 调度器,见名知意,用于调度 k8s 资源的&…...

解决hbase节点已下线,但在status中显示为dead问题

工作中需要下线4台hbase小节点,下线完成后使用status 命令查看,有一台为dead状态: 使用status detailed 查看,发现“hd-03"这台节点是dead。 检查各节点配置文件无误,并使用 /opt/hbase/bin/hbase-daemon.sh restart master 重启两个…...

深入理解Python装饰器:解析高阶函数与代码美学

文章目录 🍀引言🍀什么是装饰器?🍀装饰器的基本用法🍀带参数的装饰器🍀类装饰器🍀总结 🍀引言 当谈到Python编程中的高级特性时,装饰器(decorators&#xff0…...

构建之法 - 软件工程实践教学:每天都向前推进一点点

作者:福州⼤学 汪璟玢⽼师 汪老师:每次都向前推进一点点,哪怕只有一点点,也好过什么都不做。 ​邹老师:对,几个学期下来,就已经超过那些“空想”的团队很远了。坚持下去! 汪老师&…...

CSS transform:rotate;无效问题

CSS设置旋转 transform:rotate无效。 今天遇到一个奇怪的问题,CSS给 icon图标设置一个hover 旋转180deg的效果,不生效。 一度任务样式被覆盖了,样式不生效没选中元素的class。但是设置hover改变大小是生效的。奇怪了? 为什么会无…...

华为新版ENSP PRO模拟器测评:性能表现与功能扩展一览

一、引言 在网络领域不断涌现的新技术和复杂的网络拓扑要求,推动了网络设备模拟器的持续发展和创新。华为作为一家领先的通信技术解决方案提供商,不断致力于为网络工程师和技术从业人员提供更优秀的仿真环境。最近,华为推出了ensp pro模拟器的…...

BBS-个人博客项目完整搭建、BBS多人博客项目基本功能和需求、项目程序设计、BBS数据库表结构设计、创建BBS表模型

一、BBS-个人博客项目完整搭建 项目开发流程 一、项目分类 现在互联网公司需要开发的主流web项目一般分为两类:面向互联网用户,和公司内部管理。面向互联网用户: C(consumer)端项目 公司内部管理:B(business)端项目还有一类web应用&#xff…...

智能设备管理系统对企业设备管理效果有作用吗?

智能设备管理系统对企业设备管理效果具有显著的作用和积极的影响。它可以提高设备管理的效率、准确性和可靠性,帮助企业降低运营成本、提高生产效率,并为企业提供更好的决策支持。以下是智能设备管理系统对企业设备管理效果的几个方面影响: …...

取证--实操

2022年美亚杯个人赛 运用软件DB Browser for SQLite (一款用于查看SQLlite数据库文件的浏览器工具) 火眼,盘古石手机取证系统等 案件详情 于2022年10月,有市民因接获伪冒快递公司的电邮,不慎地于匪徒架设的假网站提…...

react组件化开发详解

React是一个流行的JavaScript库,用于构建用户界面,并且以组件化的方式进行开发。下面将详解React组件化开发的概念和步骤: 组件化思维: 组件化开发是将复杂的用户界面划分为独立、可重用的小部件(组件)。…...

【JVM】对String::intern()方法深入详解(JDK7及以上)

文章目录 1、什么是intern?2、经典例题解释例1例2例3 1、什么是intern? String::intern()是一个本地方法,它的作用是如果字符串常量池中已经包含一个等于此String对象的字符串,则返回代表池中这个字符串的String对象的引用&#…...

7.1 C/C++ 实现动态数组

动态数组相比于静态数组具有更大的灵活性,因为其大小可以在运行时根据程序的需要动态地进行分配和调整,而不需要在编译时就确定数组的大小。这使得动态数组非常适合于需要动态添加或删除元素的情况,因为它们可以在不浪费空间的情况下根据需要…...

iOS问题记录 - Xcode 15安装低版本iOS模拟器(持续更新)

文章目录 前言开发环境问题描述问题分析1. 定位问题2. 逆向分析2.1. IDA Free2.2. Hopper Disassembler Demo 3. 模拟器日志4. supportedArchs 解决方案最后 前言 最近新需求很多,项目改动很大,开发完成后想测一遍在低版本iOS系统上的兼容性&#xff0c…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层&#xf…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

Spring Boot + MyBatis 集成支付宝支付流程

Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例&#xff08;电脑网站支付&#xff09; 1. 添加依赖 <!…...

Spring AOP代理对象生成原理

代理对象生成的关键类是【AnnotationAwareAspectJAutoProxyCreator】&#xff0c;这个类继承了【BeanPostProcessor】是一个后置处理器 在bean对象生命周期中初始化时执行【org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization】方法时…...

【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)

旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据&#xff01;该数据集源自2025年4月发表于《地理学报》的论文成果…...