2023美赛C代码思路结果【全部更新完毕】注释详尽
C题已完成全部代码,注释详尽,并增加扰动项,保证大家的结果不会撞

需要全部问题的可以点击:https://www.jdmm.cc/file/2708697/
下面贴出核心代码:
-- coding: utf-8 --
TODO: 入口函数
import numpy as np
from data_encode import encode, map_n2l
from read_data import Data
from model import get_pca_model, pca_transform, get_rf_model, rf_predict
data = Data() # 打开数据表
data.get_all() # 获取所有数据
rows = data.rows # 数据行数
input_data = [[0]*164 for i in range(rows)] # 存储编码结果的矩阵,初始化位全0
print(len(data.week_list))
for i in range(rows):
input_data[i] = encode(rows - i + 8, data.week_list[i], data.word_list[i]) # 获取编码后的输入矩阵
random_state = 3 # 设置随机数,须为整数
第一问
PCA降维
print(‘第一问:’)
n_components = 45 # 主成分数量
weights, w, coe = get_pca_model(n_components, input_data) # 主成分分析
print(‘主成分影响因数总和为{w}’.format(w=w))
x_pca = pca_transform(input_data, coe) # 输入降维
为了预测不同单词在3月1日当天的报告数量取值范围,我们需要找到能使得报告数量最大的单词和能使得报告数量最小的单词
min_letter = [0] * 5 # 用来存储5个位置负相关指数最小的字母索引
max_letter = [0] * 5 # 用来存储5个位置正相关指数最大的字母索引
for i in range(5):
w_letter = [0] * 26 # 第i个字母取不同值时的权重
for j in range(26):
w_letter[j] = coe[8 + i * j] + coe[8 + 5 * j] # 第i个字母取频率为第j的字母时的权重
min_letter[i] = w_letter.index(min(w_letter)) # 使得第i个位置负相关指数最小的字母索引
max_letter[i] = w_letter.index(max(w_letter)) # 使得第i个位置负相关指数最大的字母索引
min_str = ‘’.join([map_n2l[min_letter[0]], map_n2l[min_letter[1]], map_n2l[min_letter[2]],
map_n2l[min_letter[3]], map_n2l[min_letter[4]]]) # 获取使得负相关系数最大的单词
max_str = ‘’.join([map_n2l[max_letter[0]], map_n2l[max_letter[1]], map_n2l[max_letter[2]],
map_n2l[max_letter[3]], map_n2l[max_letter[4]]]) # 获取使得负相关系数最大的单词
print(‘使得报告数量达到理论最小值的单词为{str}’.format(str=min_str))
print(‘使得报告数量达到理论最大值的单词为{str}’.format(str=max_str))
随机森林回归,预测23年3月1日报告数量范围
regressor = get_rf_model(x_pca, data.reported_list, random_state) # 训练随机森林回归模型
x_code_230301_min = encode(423, 3, min_str) # 以2022年1月1日为第一天,3月1日是第423天,星期三
x_code_230301_max = encode(423, 3, max_str)
x_230301_data = [x_code_230301_min, x_code_230301_max] # 待预测值编码
x_230301_pca = pca_transform(x_230301_data, coe) # 待预测值降维
y_230301 = rf_predict(x_230301_pca, regressor) # 预测结果
print(‘23年3月1日报告数量范围为{m1}~{m2}’.format(m1=y_230301[0], m2=y_230301[1]))
单词属性对23年3月困难模式占比的影响
x_code_2303_min = [[0]*n_components for i in range(31)] # 存放输入数据
x_code_2303_max = [[0]*n_components for i in range(31)]
相关文章:
2023美赛C代码思路结果【全部更新完毕】注释详尽
C题已完成全部代码,注释详尽,并增加扰动项,保证大家的结果不会撞 需要全部问题的可以点击:https://www.jdmm.cc/file/2708697/ 下面贴出核心代码: -- coding: utf-8 -- TODO: 入口函数 import numpy as np from…...
实现8086虚拟机(二)——模拟CPU和内存
文章目录CPU 架构EU(执行单元)BIU(总线接口单元)小结一下模拟内存模拟 BIU模拟 EU模拟 CPU总结要模拟 8086 CPU 运行,必须知道 CPU 的一些知识。下文的知识点都来自《Intel_8086_Family_Users_Manual 》。CPU 架构 微…...
Windows7下使用VMware11.1.1安装ubuntu-16.04.7
一、说明二、安装说明三、安装步骤详解1、先安装VMware软件2、创建虚拟机3、编辑虚拟机4、开启虚拟机,初始化Linux系统一、说明 虽然VMware和ubuntu最新版已经很高了,我这电脑由于是win7配值还低,所以采用低版本来安装 VMware版本࿱…...
基于SSM框架的CMS内容管理系统的设计与实现
基于SSM框架的CMS内容管理系统的设计与实现 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目…...
华为OD机试 - 运动会 | 机试题算法思路 【2023】
最近更新的博客 华为OD机试 - 自动曝光(Python) | 机试题算法思路 【2023】 华为OD机试 - 双十一(Python) | 机试题算法思路 【2023】 华为OD机试 - 删除最少字符(Python) | 机试题算法思路 【2023-02】 华为OD机试 - Excel 单元格数值统计(Python) | 机试题算法思路 …...
(C语言篇)扫雷的实现
文章目录 一、开始时的基本思维:二、进入游戏的逻辑(test.c文件中实现)三、游戏的编写 1. 初始化棋盘 I. test.cII. game.hIII. game.c 2.打印棋盘 I. test.cII. game.hIII. game.c 3.布置雷 I. test.cII. game.hIII. game.c 4.排查雷 I. test.cII. game.hIII. gam…...
华为手表开发:WATCH 3 Pro(8)获取位置服务
华为手表开发:WATCH 3 Pro(8)获取位置服务初环境与设备文件夹:文件新增第二页面geolocation.hmlgeolocation.js修改首页 -> 新建按钮 “ 跳转 ”index.hmlindex.js 引用包:system.router首页效果点击结果按钮跳转后…...
AnLogicFPGA设计的时序约束及时序收敛
本篇博文讲了三个内容:时序约束基本概念、时序约束命令、时序收敛技巧 时序约束基本概念 时序设计的实质就是满足每一个触发器的建立(setup)时间和保持(hold)时间。 建立时间(Tsu) 触发器的时钟信号沿到来以前&…...
ubuntu22.10安装sogou输入法后不能输入中文字符(可以输入中文标点符号)
问题描述 想在ubuntu22.10系统上安装sogou中文输入法,按照sogou输入法网站给出的步骤安装后,发现无法输入中文字符,但是可以输入中文标点符号。 sogou网站:https://shurufa.sogou.com/linux/guide 寻找答案1 通过各种百度和必…...
基于微信小程序的生活日用品交易平台 的设计与实现
基于微信小程序的生活日用品交易平台 的设计与实现 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一…...
15:高级篇 - CTK 事件与监听
作者: 一去、二三里 个人微信号: iwaleon 微信公众号: 高效程序员 生命周期层事件 在 Plugin 生命周期的不同状态相互转换时,CTK Plugin Framework 会发出各种不同的事件,以供事先注册好的事件监听器处理,这些事件被称为“生命周期层事件”。CTK Plugin Framework 支持的…...
SpringBoot Notes
文章目录1 SpringBootWeb快速入门1.1Spring官网1.2 Web分析2. HTTP协议2.1 HTTP介绍34 SpringBootWeb请求响应5 响应6 分层解耦6.1 三层架构6.1.1 三层架构介绍6.1.2 基于三层架构的程序执行流程:6.1.3 代码拆分6.2 分层解耦6.2.1 内聚、耦合6.2.2 解耦思路6.3 IOC&…...
CoreDNS
目录 文章目录目录本节实战前言1、环境变量2、DNS1.DNS 解析过程2.根域名服务器3.顶级域名服务器4.权威性域名服务器5.dig 域名3、CoreDNS1.CoreDNS 扩展配置(1)开开启日志服务(2)特定域名使用自定义 DNS 服务器(3&…...
码农饭碗不保——ChatGPT正在取代Coder
码农饭碗不保——ChatGPT正在取代Coder 最近被OpenAI的ChatGPT刷屏了。我猜你已经读了很多关于ChatGPT的文章,不需要再介绍了。假如碰巧您还不太了解ChatGPT是什么,可以先看一下这篇文章,然后再回来继续。 与ChatGPT对话很有趣,…...
PAT (Advanced Level) Practice 1004 Counting Leaves
1004 Counting Leaves题目翻译代码分数 30 作者 CHEN, Yue 单位 浙江大学 A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child. Input Specification: Each input file contains one test case. Eac…...
基于Redis实现的分布式锁
基于Redis实现的分布式锁什么是分布式锁分布式锁主流的实现方案Redis分布式锁Redis分布式锁的Java代码体现优化一:使用UUID防止误删除优化二:LUA保证删除原子性什么是分布式锁 单体单机部署中可以为一个操作加上锁,这样其他操作就会等待锁释…...
2023年,还找算法岗工作吗?
点击下方卡片,关注“CVer”公众号AI/CV重磅干货,第一时间送达2023年春招(补招)已经大规模启动了!距离2023年暑期实习不到2个月!距离2024届校招提前批不到4个月!距离2024届秋招正式批不到6个月&a…...
正点原子ARM裸机开发篇
裸机就是手动的操作硬件来实现驱动设备,后面会有驱动框架不需要这么麻烦 第八章 汇编 LED 灯实验 核心过程 通过汇编语言来控制硬件(驱动程序) 代码流程 1、使能 GPIO1 时钟 GPIO1 的时钟由 CCM_CCGR1 的 bit27 和 bit26 这两个位控制&…...
20222023华为OD机试 - 压缩报文还原(JS)
压缩报文还原 题目 为了提升数据传输的效率,会对传输的报文进行压缩处理。 输入一个压缩后的报文,请返回它解压后的原始报文。 压缩规则:n[str],表示方括号内部的 str 正好重复 n 次。 注意 n 为正整数(0 < n <= 100),str只包含小写英文字母,不考虑异常情况。 …...
SheetJS的部分操作
成文时间:2023年2月18日 使用版本:"xlsx": "^0.18.5" 碎碎念: 有错请指正。 这个库自说自话升级到0.19。旧版的文档我记得当时是直接写在github的README上。 我不太会使用github,现在我不知道去哪里可以找到…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
