【云原生】【k8s】Kubernetes+EFK构建日志分析安装部署
目录
EFK安装部署
一、环境准备(所有主机)
1、主机初始化配置
2、配置主机名并绑定hosts,不同主机名称不同
3、主机配置初始化
4、部署docker环境
二、部署kubernetes集群
1、组件介绍
2、配置阿里云yum源
3、安装kubelet kubeadm kubectl
4、配置init-config.yaml
init-config.yaml配置
5、安装master节点
6、安装node节点
7、安装flannel
三、部署企业镜像仓库
1、部署Harbor仓库
访问测试:
2、重启harbor,导入EFK镜像
四、部署EFK业务环境
1、准备组件Yaml文件
2、部署Elasticsearch
3、部署kibana
4、部署Fluentd
5、验证容器日志收集,创建测试容器
6、配置 Kibana
EFK安装部署
一、环境准备(所有主机)
IP地址 | 主机名 | 组件 |
192.168.100.131 | k8s-master | kubeadm、kubelet、kubectl、docker-ce |
192.168.100.132 | k8s-node01 | kubeadm、kubelet、kubectl、docker-ce、elasticsearch、fluentd |
192.168.100.133 | k8s-node02 | kubeadm、kubelet、kubectl、docker-ce、kibana、fluentd |
192.168.100.134 | harbor | docker-ce、docker-compose、harbor |
注意:所有主机配置推荐CPU:2C+ Memory:4G+、运行 Elasticsearch 的节点要有足够的内存(不低于 4GB)。若 Elasticsearch 容器退出,请检查宿主机中的/var/log/message 日志,观察是否因为系统 OOM 导致进程被杀掉。
项目拓扑
1、主机初始化配置
所有主机配置禁用防火墙和selinux
[root@localhost ~]# setenforce 0[root@localhost ~]# iptables -F[root@localhost ~]# systemctl stop firewalld[root@localhost ~]# systemctl disable firewalld[root@localhost ~]# systemctl stop NetworkManager[root@localhost ~]# systemctl disable NetworkManager[root@localhost ~]# sed -i '/^SELINUX=/s/enforcing/disabled/' /etc/selinux/config
2、配置主机名并绑定hosts,不同主机名称不同
[root@localhost ~]# hostname k8s-master[root@localhost ~]# bash[root@k8s-master ~]# cat << EOF >> /etc/hosts192.168.100.131 k8s-master192.168.100.132 k8s-node01192.168.100.133 k8s-node02EOF
[root@localhost ~]# hostname k8s-node01
[root@k8s-node01 ~]# cat /etc/hosts
[root@localhost ~]# hostname k8s-node02
[root@k8s-node02 ~]#cat /etc/hosts
3、主机配置初始化
[root@k8s-master ~]# yum -y install vim wget net-tools lrzsz
[root@k8s-master ~]# swapoff -a[root@k8s-master ~]# sed -i '/swap/s/^/#/' /etc/fstab[root@k8s-master ~]# cat << EOF >> /etc/sysctl.confnet.bridge.bridge-nf-call-ip6tables = 1net.bridge.bridge-nf-call-iptables = 1EOF[root@k8s-master ~]# modprobe br_netfilter[root@k8s-master ~]# sysctl -p
4、部署docker环境
1)三台主机上分别部署 Docker 环境,因为 Kubernetes 对容器的编排需要 Docker 的支持。
[root@k8s-master ~]# wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo
[root@k8s-master ~]# yum install -y yum-utils device-mapper-persistent-data lvm2
2)使用 YUM 方式安装 Docker 时,推荐使用阿里的 YUM 源。
[root@k8s-master ~]# yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
3)清除缓存
[root@k8s-master ~]# yum clean all && yum makecache fast
4)启动docker
[root@k8s-master ~]# yum -y install docker-ce
[root@k8s-master ~]# systemctl start docker
[root@k8s-master ~]# systemctl enable docker
5)镜像加速器(所有主机配置)
[root@k8s-master ~]# cat << END > /etc/docker/daemon.json
{ "registry-mirrors":[ "https://nyakyfun.mirror.aliyuncs.com" ]
}
END
6)重启docker
[root@k8s-master ~]# systemctl daemon-reload
[root@k8s-master ~]# systemctl restart docker
二、部署kubernetes集群
1、组件介绍
三个节点都需要安装下面三个组件
kubeadm:安装工具,使所有的组件都会以容器的方式运行
kubectl:客户端连接K8S API工具
kubelet:运行在node节点,用来启动容器的工具
2、配置阿里云yum源
使用 YUM 方式安装 Kubernetes时,推荐使用阿里的 YUM 源。
[root@k8s-master ~]# ls /etc/yum.repos.d/
[root@k8s-master ~]# cat > /etc/yum.repos.d/kubernetes.repo
3、安装kubelet kubeadm kubectl
所有主机配置
[root@k8s-master ~]# yum install -y kubelet-1.20.0 kubeadm-1.20.0 kubectl-1.20.0
[root@k8s-master ~]# systemctl enable kubelet
[root@k8s-master ~]# kubectl version
kubelet 刚安装完成后,通过 systemctl start kubelet 方式是无法启动的,需要加入节点或初始化为 master 后才可启动成功。
4、配置init-config.yaml
Kubeadm 提供了很多配置项,Kubeadm 配置在 Kubernetes 集群中是存储在ConfigMap 中的,也可将这些配置写入配置文件,方便管理复杂的配置项。Kubeadm 配内容是通过 kubeadm config 命令写入配置文件的。
在master节点安装,master 定于为192.168.100.131,通过如下指令创建默认的init-config.yaml文件:
[root@k8s-master ~]# kubeadm config print init-defaults > init-config.yaml
init-config.yaml配置
[root@k8s-master ~]# cat init-config.yaml
5、安装master节点
1)拉取所需镜像
[root@k8s-master ~]# kubeadm config images list --config init-config.yaml
[root@k8s-master ~]# kubeadm config images pull --config init-config.yaml
2)安装matser节点
[root@k8s-master ~]# kubeadm init --config=init-config.yaml //初始化安装K8S
3)根据提示操作
kubectl 默认会在执行的用户家目录下面的.kube 目录下寻找config 文件。这里是将在初始化时[kubeconfig]步骤生成的admin.conf 拷贝到.kube/config
[root@k8s-master ~]# mkdir -p $HOME/.kube
[root@k8s-master ~]# cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
[root@k8s-master ~]# chown $(id -u):$(id -g) $HOME/.kube/config
Kubeadm 通过初始化安装是不包括网络插件的,也就是说初始化之后是不具备相关网络功能的,比如 k8s-master 节点上查看节点信息都是“Not Ready”状态、Pod 的 CoreDNS无法提供服务等。
6、安装node节点
1)根据master安装时的提示信息
[root@k8s-node01 ~]# kubeadm join 192.168.100.131:6443 --token abcdef.0123456789abcdef --discovery-token-ca-cert-hash sha256:78bdd0f01660f4e84355b70aa8807cf1d0d6325b0b28502b29c241563e93b4ae
[root@k8s-master ~]# kubectl get nodes
[root@k8s-node02 ~]# kubeadm join 192.168.100.131:6443 --token abcdef.0123456789abcdef --discovery-token-ca-cert-hash sha256:78bdd0f01660f4e84355b70aa8807cf1d0d6325b0b28502b29c241563e93b4ae
Master操作:
[root@k8s-master ~]# kubectl get nodes
前面已经提到,在初始化 k8s-master 时并没有网络相关配置,所以无法跟 node 节点通信,因此状态都是“NotReady”。但是通过 kubeadm join 加入的 node 节点已经在k8s-master 上可以看到。
7、安装flannel
Master 节点NotReady 的原因就是因为没有使用任何的网络插件,此时Node 和Master的连接还不正常。目前最流行的Kubernetes 网络插件有Flannel、Calico、Canal、Weave 这里选择使用flannel。
所有主机:
master上传kube-flannel.yml,所有主机上传flannel_v0.12.0-amd64.tar,cni-plugins-linux-amd64-v0.8.6.tgz
[root@k8s-master ~]# docker load < flannel_v0.12.0-amd64.tar
上传插件:
[root@k8s-master ~]# tar xf cni-plugins-linux-amd64-v0.8.6.tgz
[root@k8s-master ~]# cp flannel /opt/cni/bin/
master上传kube-flannel.yml
master主机配置:
[root@k8s-master ~]# kubectl apply -f kube-flannel.yml
[root@k8s-master ~]# kubectl get nodes
[root@k8s-master ~]# kubectl get pods -n kube-system
已经是ready状态
三、部署企业镜像仓库
1、部署Harbor仓库
1)所有主机配置禁用防火墙和selinux
[root@localhost ~]# setenforce 0[root@localhost ~]# iptables -F[root@localhost ~]# systemctl stop firewalld[root@localhost ~]# systemctl disable firewalld[root@localhost ~]# systemctl stop NetworkManager[root@localhost ~]# systemctl disable NetworkManager[root@localhost ~]# sed -i '/^SELINUX=/s/enforcing/disabled/' /etc/selinux/config
2)配置主机名
[root@localhost ~]# hostname harbor
[root@localhost ~]# bash
[root@harbor ~]#
3)部署docker环境
Harbor 仓库需要 Docker 容器支持,所以 Docker 环境是必不可少的。
[root@k8s-master ~]# wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo
[root@k8s-master ~]# yum install -y yum-utils device-mapper-persistent-data lvm2
使用 YUM 方式安装 Docker 时,推荐使用阿里的 YUM 源。
[root@k8s-master ~]# yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
清除缓存
[root@k8s-master ~]# yum clean all && yum makecache fast
启动docker
[root@k8s-master ~]# yum -y install docker-ce
[root@k8s-master ~]# systemctl start docker
[root@k8s-master ~]# systemctl enable docker
镜像加速器(所有主机配置)
[root@k8s-master ~]# cat << END > /etc/docker/daemon.json
{ "registry-mirrors":[ "https://nyakyfun.mirror.aliyuncs.com" ]
}
END
重启docker
[root@k8s-master ~]# systemctl daemon-reload
[root@k8s-master ~]# systemctl restart docker
部署docker-compose
[root@harbor ~]# mv docker-compose /usr/local/bin/
[root@harbor ~]# chmod +x /usr/local/bin/docker-compose
部署harbor
Harbor 私有仓库程序,采用 docker-compose 方式部署,不同的功能和应用处于不同的容器,这样带来了很好的兼容性,可在众多支持 Docker 的系统上运行 Harbor。
[root@harbor ~]# tar xf harbor-offline-installer-v1.10.6.tgz -C /usr/local/
Harbor 的配置文件是/usr/local/harbor/harbor.yml 文件,默认的 hostname 要修改为Harbor 虚拟机节点的 IP 地址。
[root@harbor ~]# vim /usr/local/harbor/harbor.yml
5 hostname: 192.168.200.114
13 #https: //https 相关配置都注释掉,包括 https、port、certificate 和 private_key
14 # https port for harbor, default is 443
15 #port: 443
16 # The path of cert and key files for nginx
17 #certificate: /your/certificate/path
18 #private_key: /your/private/key/path
启动harbor
[root@harbor ~]# cd /usr/local/harbor/
[root@harbor harbor]# sh install.sh
[root@harbor harbor]# docker-compose ps
访问测试:
Harbor 启动完成后,浏览器访问 http://192.168.100.134,打开 Harbor Web 页面
修改所有主机docker启动脚本
[root@harbor ~]# vim /usr/lib/systemd/system/docker.service
[root@harbor ~]# scp /usr/lib/systemd/system/docker.service 192.168.100.131:/usr/lib/systemd/system/
[root@harbor ~]# scp /usr/lib/systemd/system/docker.service 192.168.100.132:/usr/lib/systemd/system/
[root@harbor ~]# scp /usr/lib/systemd/system/docker.service 192.168.100.133:/usr/lib/systemd/system/
所有主机重启docker服务
[root@harbor ~]# systemctl daemon-reload
[root@harbor ~]# systemctl restart docker
2、重启harbor,导入EFK镜像
[root@harbor ~]# sh install.sh
[root@harbor ~]# docker login -u admin -p Harbor12345 http://192.168.100.134
[root@harbor ~]# cd efk
[root@harbor ~]# ls
[root@harbor ~]# docker load < elasticsearch-7.4.2.tar
[root@harbor ~]# docker load < fluentd-es.tar
[root@harbor ~]# docker load < kibana-7.4.2.tar
[root@harbor ~]# docker load < alpine-3.6.tar
[root@harbor ~]# docker tag b1179d 192.168.100.134/efk/elasticsearch:7.4.2
[root@harbor ~]# docker tag 636f3d 192.168.100.134/efk/fluentd-es-root:v2.5.2
[root@harbor ~]# docker tag 43773d 192.168.100.134/efk/alpine:3.6
[root@harbor ~]# docker tag 230d3d 192.168.100.134/efk/kibana:7.4.2
[root@harbor ~]# docker push 192.168.100.134/efk/elasticsearch:7.4.2
[root@harbor ~]# docker push 192.168.100.134/efk/fluentd-es-root:v2.5.2
[root@harbor ~]# docker push 192.168.100.134/efk/kibana:7.4.2
[root@harbor ~]# docker push 192.168.100.134/efk/alpine:3.6
四、部署EFK业务环境
1、准备组件Yaml文件
Yaml文件中涉及到镜像地址和 nodeSelector 选择器地址需要注意修改。
[root@k8s-master ~]# mkdir efk #上传对应的yaml文件
[root@k8s-master ~]# cd efk/
[root@k8s-master efk]# grep "image:" elasticsearch.yaml
image: 192.168.100.134/efk/elasticsearch:7.4.2
image: 192.168.100.134/efk/alpine:3.6
image: 192.168.100.134/efk/alpine:3.6
NodeSelector 节点选择器的修改,实际作用是决定将 Elasticsearch 服务部署到哪个节点。当前配置文件内是调度到 k8s-node01 节点,请根据实际负载情况进行调整。节点名称可以通过 kubectl get nodes 获取,在选择节点时务必确保节点有足够的资源。
[root@k8s-master efk]# grep -A1 "nodeSelector" elasticsearch.yaml
nodeSelector:
kubernetes.io/hostname: k8s-node01
对kibana.yaml文件镜像地址和调度节点进行修改,将 Kibana 部署到 k8s-node02 节点。
[root@k8s-master efk]# grep "image:" kibana.yaml
image: 192.168.100.134/efk/kibana:7.4.2
[root@k8s-master efk]# grep -A1 "nodeSelector" kibana.yaml
nodeSelector:
kubernetes.io/hostname: k8s-node02
修改 fluentd.yaml的镜像地址
[root@k8s-master efk]# grep "image:" fluentd.yaml
image: 192.168.100.134/efk/fluentd-es-root:v2.5.2
修改 test-pod.yaml的镜像地址
[root@k8s-master efk]# grep "image:" test-pod.yaml
image: 192.168.100.134/efk/alpine:3.6
2、部署Elasticsearch
1)创建命名空间
创建名为 logging 的命名空间,用于存放 EFK 相关的服务。在 k8s-master节点的/opt/efk 目录下。
[root@k8s-master efk]# kubectl create -f namespace.yaml
[root@k8s-master efk]# kubectl get namespaces | grep logging
2)创建 es 数据存储目录
Elasticsearch 服务通常可以简写为 es。到 k8s-node01 节点创建数据目录/esdata。
[root@k8s-node01 ~]# mkdir /esdata
3)部署 es 容器
进入 k8s-master节点的/efk 目录,部署 es 容器,执行如下操作。
[root@k8s-master ~]# cd efk/
[root@k8s-master efk]# kubectl create -f elasticsearch.yaml
等待片刻,即可查看到 es 的 Pod,已经部署到 k8s-node01 节点,状态变为 running。
[root@k8s-master efk]# kubectl -n logging get pods -o wide
[root@k8s-master efk]# kubectl -n logging get svc
通过 curl 命令访问服务,验证 es 是否部署成功。
[root@k8s-master efk]# curl 10.98.29.202:9200
3、部署kibana
进入 k8s-master 的/opt/efk 目录,执行如下命令。
[root@k8s-master efk]# kubectl create -f kibana.yaml
service/kibana created
查看 Pod 的状态。
[root@k8s-master efk]# kubectl -n logging get pods
查看对应的 Service,得到 NodePort 值为 31732,此端口为随机端口,不同环境会不一致,请以实际结果为准。
[root@k8s-master efk]# kubectl -n logging get svc |grep
通过访问 192.168.100.131:31591 进入到 kibana 的访问界面,观察是否可以正常打开,其中 31591 端口需要替换成实际的端口号。若能正常访问,说明 Kibana 连接 es 已经正常。
4、部署Fluentd
1)给集群节点打标签
为了自由控制需要采集集群中节点上业务容器的服务日志。因此,需要给 k8s-node01和 k8s-node02 节点打上 fluentd=true 的标签 label。
[root@k8s-master efk]# kubectl label node k8s-node01 fluentd=true
[root@k8s-master efk]# kubectl label node k8s-node02 fluentd=true
k8s-node01 和 k8s-node02 已经打上了 fluentd=true 的 label,那么 Fluentd 服务就会启动到这两个节点,也就意味着运行在这两个节点的 Pod 日志会被收集起来。
2)启动 Fluentd 服务
在 k8s-master节点的/opt/efk 目录,启动 Fluentd 服务
[root@k8s-master efk]# kubectl create -f fluentd-es-config-main.yaml
[root@k8s-master efk]# kubectl create -f fluentd-configmap.yaml
[root@k8s-master efk]# kubectl create -f fluentd.yaml
3)查看 Pod 信息
是否已经在 k8s-node01 和 k8s-node02 节点启动成功。
[root@k8s-master efk]# kubectl -n logging get pods
5、验证容器日志收集,创建测试容器
进入 k8s-master的/opt/efk 目录,执行如下命令。
[root@k8s-master efk]# kubectl create -f test-pod.yaml
[root@k8s-master efk]# kubectl get pods
6、配置 Kibana
索引创建完成后,可以发现已经生成了多个索引域,稍等片刻再次点击左上角的
discover 图标,进入日志检索页面。
然后通过索引键去过滤,比如根据Kubernetes.host、Kubernetes.container_name、 kubernetes.container_image_id等去做过滤。
通过其他元数据也可以过滤日志数据,比如单击任何日志条目以查看其他元数据,如容器名称、Kubernetes 节点、命名空间等。
到这里,在 Kubernetes 集群上已经成功部署了 EFK。
相关文章:

【云原生】【k8s】Kubernetes+EFK构建日志分析安装部署
目录 EFK安装部署 一、环境准备(所有主机) 1、主机初始化配置 2、配置主机名并绑定hosts,不同主机名称不同 3、主机配置初始化 4、部署docker环境 二、部署kubernetes集群 1、组件介绍 2、配置阿里云yum源 3、安装kubelet kubeadm …...

计算实数数组中所有元素的绝对值 numpy.fabs()
【小白从小学Python、C、Java】 【计算机等级考试500强双证书】 【Python-数据分析】 计算实数数组中所有元素的绝对值 numpy.fabs() [太阳]选择题 请问关于以下代码表述错误的是? iimport numpy as np a np.array([-1,-3]) b np.array([-1,34j]) print("【显…...
深入浅出Pytorch函数——torch.nn.init.orthogonal_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
ORACLE中UNION、UNION ALL、MINUS、INTERSECT学习
1、UNION和UNION ALL的使用与区别 如果我们需要将两个select语句的结果作为一个整体显示出来,我们就需要用到union或者union all关键字。union的作用是将多个结果合并在一起显示出来。 union和union all的区别是union会自动压缩多个结果集合中的重复结果ÿ…...

【k8s、云原生】基于metrics-server弹性伸缩
第四阶段 时 间:2023年8月18日 参加人:全班人员 内 容: 基于metrics-server弹性伸缩 目录 一、Kubernetes部署方式 (一)minikube (二)二进制包 (三)Kubeadm 二…...

回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基本介绍程…...
VSCode快捷键
CtrlShiftP,F1:显示命令面板 CtrlP:快速打开 CtrlShiftN:新窗口/实例 CtrlShiftW:关闭窗口/实例 CtrlX:剪切行 CtrlC:复制行 ALT↑/↓:上下移动 ShiftAlt↓/↑:向…...
贪心算法求数组中能组成三角形的最大周长
题目:三角形的最大周长 给定由一些正数(代表长度)组成的数组arr,返回由其中三个长度组成的、面积不为零的三角形的最大周长。 如果不能形成任何面积不为零的三角形,返回0。 分析: 对数组排序,再从大到小选择三个数,再…...

VMWare Workstation 17 Pro 网络设置 桥接模式 网络地址转换(NAT)模式 仅主机模式
文章目录 网络模式配网要求CentOSDHCP虚拟网络桥接模式默认配置测试手动配置测试 网络地址转发模式 (NAT)还原配置虚拟网络配置默认配置测试手动配置测试 仅主机模式 网络模式 桥接模式: 主机与虚拟机对等, 虚拟机注册到主机所在的局域网, 会占用该网络的IP该局域网内的所有机…...

拒绝摆烂!C语言练习打卡第四天
🔥博客主页:小王又困了 📚系列专栏:每日一练 🌟人之为学,不日近则日退 ❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、选择题 📝1.第一题 📝2.第二题 Ὅ…...

KubeSphere 社区双周报 | Java functions framework 支持 SkyWalking | 2023.8.4-8.17
KubeSphere 社区双周报主要整理展示新增的贡献者名单和证书、新增的讲师证书以及两周内提交过 commit 的贡献者,并对近期重要的 PR 进行解析,同时还包含了线上/线下活动和布道推广等一系列社区动态。 本次双周报涵盖时间为:2023.08.04-2023.…...

【学习笔记之java】使用RestTemplate调用第三方接口
1.首先需要导入依赖 <!-- RestTemplate使用导入的依赖--><dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.13</version></dependency>2.跟启动类同级创建…...

数据集成革新:去中心化微服务集群的无限潜能
在当今数据密集型的业务环境下,传统的集中式架构已经难以满足高可用性和高并发性的要求。而去中心化微服务集群则通过分散式的架构,将系统划分为多个小型的、独立部署的微服务单元,每个微服务负责特定的业务功能,实现了系统的高度…...
后端返回可下载的xlsx文件,但是前端接收下载后为乱码
我的接收数据进行处理的代码为: download_signal_list() {return new Promise((resolve, reject) > {get_download_signal({project_id: this.projectId,version_id: this.versionId}).then(response > {const url window.URL.createObjectURL(new Blob([res…...
提升资源管理效率必备工具推荐
一、数据传输 1、Textify(PC) 作为一名技术人员,需要经常研究各种技术,因此,复制粘贴的操作十分常见。 Textify可以快速复制各种控件中的文本,包括浏览器中当前页面的标题、聊天窗口中各个部分的文字、桌…...
HJ23 删除字符串中出现次数最少的字符
描述 实现删除字符串中出现次数最少的字符,若出现次数最少的字符有多个,则把出现次数最少的字符都删除。输出删除这些单词后的字符串,字符串中其它字符保持原来的顺序。 数据范围:输入的字符串长度满足 1≤n≤20 1≤n≤20 &…...

文心一言 VS 讯飞星火 VS chatgpt (76)-- 算法导论7.3 1题
一、如果用go语言,为什么我们分析随机化算法的期望运行时间,而不是其最坏运行时间呢? 文心一言: 在分析算法的性能时,期望运行时间是一个重要的指标,它描述了算法在平均情况下的表现。期望运行时间考虑了所有可能的…...
Leetcode - 滑动窗口
文章目录 1. 滑动窗口2. 举例2.1 无重复字符的最长子串2.2 长度最小的子数组2.3 滑动窗口最大值2.4 最小覆盖子串2.5 删除有序数组中的重复项 1. 滑动窗口 滑动窗口的大概思想如下: 可以通过两个指针来标识窗口的边界。窗口的长度是可以固定的,也可以是…...

如何保证数据传输的安全?
要确保数据传输的安全,您可以采取以下措施: 使用加密协议:使用安全的传输协议,如HTTPS(HTTP over SSL/TLS)或其他安全协议,以保护数据在传输过程中的安全性。加密协议可以有效防止数据被窃听或篡改。 强化身份验证&…...

政务、商务数据资源有效共享:让数据上“链”,记录每一个存储过程!
数据上链是目前“区块链”最常见的场景。因为链上所有参与方都分享了统一的事实来源,所有人都可以即时获得最新的信息,数据可用不可见。因此,不同参与方之间的协作效率得以大幅提高。同时,因为区块链上的数据难以篡改,…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...