当前位置: 首页 > news >正文

数据分析 | 调用Optuna库实现基于TPE的贝叶斯优化 | 以随机森林回归为例

1. Optuna库的优势

        对比bayes_opt和hyperoptOptuna不仅可以衔接到PyTorch等深度学习框架上,还可以与sklearn-optimize结合使用,这也是我最喜欢的地方,Optuna因此特性可以被使用于各种各样的优化场景。

 

2. 导入必要的库及加载数据

        用的是sklearn自带的房价数据,只是我把它保存下来了。

import optuna
import pandas as pd
import numpy as np
from sklearn.model_selection import KFold,cross_validate
print(optuna.__version__)
from sklearn.ensemble import RandomForestRegressor as RFR
data = pd.read_csv(r'D:\2暂存文件\Sth with Py\贝叶斯优化\data.csv')
X = data.iloc[:,0:8]
y = data.iloc[:,8]

3. 定义目标函数与参数空间

        Optuna相对于其他库,不需要单独输入参数或参数空间,只需要直接在目标函数中定义参数空间即可。这里以负均方误差为损失函数。

def optuna_objective(trial) :# 定义参数空间n_estimators = trial.suggest_int('n_estimators',10,100,1)max_depth = trial.suggest_int('max_depth',10,50,1)max_features = trial.suggest_int('max_features',10,30,1)min_impurtity_decrease = trial.suggest_float('min_impurity_decrease',0.0, 5.0, step=0.1)# 定义评估器reg = RFR(n_estimators=n_estimators,max_depth=max_depth,max_features=max_features,min_impurity_decrease=min_impurtity_decrease,random_state=1412,verbose=False,n_jobs=-1)# 定义交叉过程,输出负均方误差cv = KFold(n_splits=5,shuffle=True,random_state=1412)validation_loss = cross_validate(reg,X,y,scoring='neg_mean_squared_error',cv=cv,verbose=True,n_jobs=-1,error_score='raise')return np.mean(validation_loss['test_score'])

4.  定义优化目标函数

        在Optuna中我们可以调用sampler模块进行选用想要的优化算法,比如TPE、GP等等。

def optimizer_optuna(n_trials,algo):# 定义使用TPE或GPif algo == 'TPE':algo = optuna.samplers.TPESampler(n_startup_trials=20,n_ei_candidates=30)elif algo == 'GP':from optuna.integration import SkoptSamplerimport skoptalgo = SkoptSampler(skopt_kwargs={'base_estimator':'GP','n_initial_points':10,'acq_func':'EI'})study = optuna.create_study(sampler=algo,direction='maximize')study.optimize(optuna_objective,n_trials=n_trials,show_progress_bar=True)print('best_params:',study.best_trial.params,'best_score:',study.best_trial.values,'\n')return study.best_trial.params, study.best_trial.values

5. 执行部分

import warnings
warnings.filterwarnings('ignore',message='The objective has been evaluated at this point before trails')
optuna.logging.set_verbosity(optuna.logging.ERROR)
best_params, best_score = optimizer_optuna(200,'TPE')

6. 完整代码

import optuna
import pandas as pd
import numpy as np
from sklearn.model_selection import KFold,cross_validate
print(optuna.__version__)
from sklearn.ensemble import RandomForestRegressor as RFRdata = pd.read_csv(r'D:\2暂存文件\Sth with Py\贝叶斯优化\data.csv')
X = data.iloc[:,0:8]
y = data.iloc[:,8]def optuna_objective(trial) :# 定义参数空间n_estimators = trial.suggest_int('n_estimators',10,100,1)max_depth = trial.suggest_int('max_depth',10,50,1)max_features = trial.suggest_int('max_features',10,30,1)min_impurtity_decrease = trial.suggest_float('min_impurity_decrease',0.0, 5.0, step=0.1)# 定义评估器reg = RFR(n_estimators=n_estimators,max_depth=max_depth,max_features=max_features,min_impurity_decrease=min_impurtity_decrease,random_state=1412,verbose=False,n_jobs=-1)# 定义交叉过程,输出负均方误差cv = KFold(n_splits=5,shuffle=True,random_state=1412)validation_loss = cross_validate(reg,X,y,scoring='neg_mean_squared_error',cv=cv,verbose=True,n_jobs=-1,error_score='raise')return np.mean(validation_loss['test_score'])def optimizer_optuna(n_trials,algo):# 定义使用TPE或GPif algo == 'TPE':algo = optuna.samplers.TPESampler(n_startup_trials=20,n_ei_candidates=30)elif algo == 'GP':from optuna.integration import SkoptSamplerimport skoptalgo = SkoptSampler(skopt_kwargs={'base_estimator':'GP','n_initial_points':10,'acq_func':'EI'})study = optuna.create_study(sampler=algo,direction='maximize')study.optimize(optuna_objective,n_trials=n_trials,show_progress_bar=True)print('best_params:',study.best_trial.params,'best_score:',study.best_trial.values,'\n')return study.best_trial.params, study.best_trial.valuesimport warnings
warnings.filterwarnings('ignore',message='The objective has been evaluated at this point before trails')
optuna.logging.set_verbosity(optuna.logging.ERROR)
best_params, best_score = optimizer_optuna(200,'TPE')

 

相关文章:

数据分析 | 调用Optuna库实现基于TPE的贝叶斯优化 | 以随机森林回归为例

1. Optuna库的优势 对比bayes_opt和hyperoptOptuna不仅可以衔接到PyTorch等深度学习框架上,还可以与sklearn-optimize结合使用,这也是我最喜欢的地方,Optuna因此特性可以被使用于各种各样的优化场景。 2. 导入必要的库及加载数据 用的是sklea…...

stm32单片机开关输入控制蜂鸣器参考代码(附PROTEUS电路图)

说明:这个buzzer的额定电压需要改为3V,否则不会叫,源代码几乎是完全一样的 //gpio.c文件 /* USER CODE BEGIN Header */ /********************************************************************************* file gpio.c* brief Thi…...

打印X型的图案

int main() {int n0;int i0;int j0;scanf("%d",&n);for(i0;i<n;i){for(j0;j<n;j){if(ij){printf("*");}else if((ij)n-1){printf("*");}elseprintf(" ");}printf("\n");}return 0; }...

不含数字的webshell绕过

异或操作原理 1.首先我们得了解一下异或操作的原理 在php中&#xff0c;异或操作是两个二进制数相同时&#xff0c;异或(相同)为0&#xff0c;不同为1 举个例子 A的ASCII值是65&#xff0c;对应的二进制值是0100 0001 的ASCII值是96&#xff0c;对应的二进制值是 0110 000…...

Mac上传项目源代码到GitHub的修改更新

Mac上传项目源代码到GitHub的修改更新 最近在学习把代码上传到github&#xff0c;不得不说&#xff0c;真的还挺方便 这是一个关于怎样更新项目代码的教程。 首先&#xff0c;在本地终端命令行打开至项目文件下第一步&#xff1a;查看当前的git仓库状态&#xff0c;可以使用git…...

Android6:片段和导航

创建项目Secret Message strings.xml <resources><string name"app_name">Secret Message</string><string name"welcome_text">Welcome to the Secret Message app!Use this app to encrypt a secret message.Click on the Star…...

ClickHouse AST is too big 报错问题处理记录

ClickHouse AST is too big 报错问题处理记录 问题描述问题分析解决方案1、修改系统配置2、修改业务逻辑 问题描述 项目中统计报表的查询出现 AST is too big 问题&#xff0c;报错信息如下&#xff1a; 问题分析 报错信息显示 AST is too big。 AST 表示查询语法树中的最大…...

DPDK系列之二十七DIDO

一、DIDO介绍 随着计算机技术发展&#xff0c;特别是应用技术的快速发展。应用场景对计算机的处理速度几乎已经到了疯狂的地步。说句大白话&#xff0c;再快的CPU也嫌慢。没办法&#xff0c;CPU和IO等技术基本目前都处在了瓶颈之处&#xff0c;大幅度提高&#xff0c;短时间内…...

《游戏编程模式》学习笔记(七)状态模式 State Pattern

状态模式的定义 允许对象在当内部状态改变时改变其行为&#xff0c;就好像此对象改变了自己的类一样。 举个例子 在书的示例里要求你写一个人物控制器&#xff0c;实现跳跃功能 直觉上来说&#xff0c;我们代码会这么写&#xff1a; void Heroine::handleInput(Input input…...

博客系统之功能测试

博客系统共有&#xff1a;用户登录功能、发布博客功能、查看文章详情功能、查看文章列表功能、删除文章功能、退出功能 1.登录功能&#xff1a; 1.1测试对象&#xff1a;用户登录 1.2测试用例 方法&#xff1a;判定表 用例 编号 操作步骤预期结果实际结果截图1 1.用户名正确…...

CJS和 ES6 的语法区别

CommonJS 使用 module.exports 导出模块。ES6 使用 export 导出模块。 示例代码&#xff1a; CommonJS&#xff08;CJS&#xff09;模块的导出&#xff1a; // 导出模块 module.exports {foo: bar,baz: function() {return qux;} }; ES6 模块的导出&#xff1a; // 导出模…...

ArcGIS Pro如何制作不规则形状图例

在默认的情况下&#xff0c;ArcGIS Pro生成的图例是标准的点、直线和矩形的&#xff0c;对于湖泊等要素而言&#xff0c;这样的表示方式不够直观&#xff0c;我们可以将其优化一下&#xff0c;制作不规则的线和面来代替原有图例&#xff0c;这里为大家介绍一下制作方法&#xf…...

微软Win11 Dev预览版Build23526发布

近日&#xff0c;微软Win11 Dev预览版Build23526发布&#xff0c;修复了不少问题。牛比如斯Microsoft&#xff0c;也有这么多bug&#xff0c;所以你写再多bug也不作为奇啊。 主要更新问题 [开始菜单&#xff3d; 修复了在高对比度主题下&#xff0c;打开开始菜单中的“所有应…...

【NEW】视频云存储EasyCVR平台H.265转码配置增加分辨率设置

关于视频分析EasyCVR视频汇聚平台的转码功能&#xff0c;我们在此前的文章中也介绍过不少&#xff0c;感兴趣的用户可以翻阅往期的文章进行了解。 安防视频集中存储EasyCVR视频监控综合管理平台可以根据不同的场景需求&#xff0c;让平台在内网、专网、VPN、广域网、互联网等各…...

【数据结构】如何用队列实现栈?图文详解(LeetCode)

LeetCode链接&#xff1a;225. 用队列实现栈 - 力扣&#xff08;LeetCode&#xff09; 本文默认读者已经掌握栈与队列的基本知识 或者先看我的另一篇博客&#xff1a;【数据结构】栈与队列_字节连结的博客-CSDN博客 做题思路 由于我们使用的是C语言&#xff0c;不能直接使用队…...

Linux 虚拟机Ubuntu22.04版本通过远程连接连接不上,输入ifconfig只能看到127.0.0.1的解决办法

之前给虚拟机配置静态IP之后&#xff0c;可以直接通过主机Vscode远程连接。但是前一段时间把主机的TCP/IPV4静态IP设置了一下之后&#xff0c;再连接虚拟机就连不上了&#xff0c;于是参考解决虚拟机不能上网ifconfig只显示127.0.0.1的问题&#xff0c;又可以连接上了&#xff…...

C语言刷题训练DAY.9

1.线段图案 解题思路&#xff1a; 这里非常简单&#xff0c;我们只需要用一个循环控制打印即可。 解题代码&#xff1a; #include<stdio.h> int main() {int n 0;while ((scanf("%d", &n)) ! EOF){int i 0;for (i 0; i < n; i){printf("*&…...

CTFHub php://input

1.首先看代码&#xff1a; 这里其实就应该想到的是php://伪协议&#xff1a; php://filter、php://input、php://filter用于读取源码 php://input用于执行php代码 2.其次&#xff0c;判断使用php://input伪协议 而执行php://input伪协议条件是allow_url_include是On 可以先利用…...

React Native expo项目修改应用程序名称

https://expo.dev/accounts/xutongbao/projects npm install --global eas-cli && \eas init --id e32cf2c0-da5b-4a65-814a-4958d58f0ca7 eas init --id e32cf2c0-da5b-4a65-814a-4958d58f0ca7 app.config.js: export default {name: 学习,slug: learn-gpt,owner: x…...

unity 之Transform组件(汇总)

文章目录 理论指导结合例子 理论指导 当在Unity中处理3D场景中的游戏对象时&#xff0c;Transform 组件是至关重要的组件之一。它管理了游戏对象的位置、旋转和缩放&#xff0c;并提供了许多方法来操纵和操作这些属性。以下是关于Transform 组件的详细介绍&#xff1a; 位置&a…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!

目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...

2.3 物理层设备

在这个视频中&#xff0c;我们要学习工作在物理层的两种网络设备&#xff0c;分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间&#xff0c;需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质&#xff0c;假设A节点要给…...