当前位置: 首页 > news >正文

七夕特辑(一)浪漫表白方式 用神经网络生成一首情诗

目录

  • 一、准备工作
  • 二、用神经网络生成一首诗,代码说明

在这里插入图片描述

牛郎织女相会,七夕祝福要送来。祝福天下有情人,终成眷属永相伴。
七夕是中国传统的情人节,也是恋人们表达爱意的好时机。在这个特别的日子里,送上温馨的祝福,愿你们的爱情甜蜜如蜜,幸福美满。
爱情是生命中最美好的事物之一,而七夕则是庆祝爱情的日子。无论你们是刚刚开始恋爱,还是已经在一起多年,都应该珍惜彼此的陪伴,相互关爱,共同成长。
在这个充满浪漫和温馨气氛的日子里,我祝愿每一对恋人都能拥有幸福的未来。愿你们的爱情之路坦荡顺畅,无论遇到什么困难,都能携手同行,共同度过。
愿你们的爱情像牛郎织女一样坚定,无论距离有多远,都能心心相印,相互感应。愿你们的爱情像流星一样闪耀,划破夜空,留下永恒的印记。愿你们的爱情像玫瑰一样美丽,绽放出绚烂的色彩,散发出迷人的芳香。
在这个特别的日子里,让我们一起祝福天下有情人,愿你们的爱情甜蜜如蜜,幸福美满。愿你们的未来充满阳光和快乐,每一天都是一个美好的情人节。

今天就介绍一种浪漫表白方式,用神经网络生成一首情诗

一、准备工作

  1. 准备数据集
    要生成一首情诗,首先需要一个包含大量情诗的文本数据集。可以从互联网上下载情诗集,或者自己创建一个。数据集应包括每首情诗的标题和正文。将数据集分为训练集和测试集。
  2. 数据预处理
    对数据集进行预处理。将所有文本转换为小写,去除标点符号,并将每个单词转换为索引。需要为训练集和测试集执行相同的预处理操作。
  3. 构建神经网络模型
    选择一个合适的神经网络模型,例如循环神经网络(RNN)或长短时记忆网络(LSTM)。根据项目需求和计算资源,可以构建一个简单的模型,也可以尝试使用更复杂的模型。
  4. 训练模型
    使用训练集训练模型。调整模型的超参数,如学习率、批次大小和迭代次数,以获得最佳性能。在训练过程中,可以使用验证集来监控模型的性能。
  5. 评估模型
    使用测试集评估模型的性能。计算模型的损失和准确率,并检查其生成情诗的质量。如果模型表现不佳,可以尝试调整超参数或使用更复杂的模型。
  6. 生成情诗
    使用训练好的模型生成一首情诗。首先,将用户输入的文字转换为索引,然后使用模型预测下一个词的索引。重复这个过程,直到生成一首满足长度要求的情诗。
  7. 完善情诗
    生成的情诗可能不够完美,可以对其进行后处理,如检查语法、拼写错误并进行修正。此外,还可以使用自然语言生成(NLG)技术,如基于 GPT-3 的模型,来改进生成的情诗。

为了获得更详细的教程和代码示例,请参阅以下资源:

  • Neural Networks and Deep Learning:TensorFlow 官方教程,涵盖了生成式模型和深度学习。
  • seq2seq 模型:一个基于 SeqGAN 的翻译和文本生成项目的教程和代码。
  • 使用 GPT-3 进行自然语言生成:一个使用 GPT-3 进行自然语言生成的示例和代码。
    希望这些资源能帮助您实现项目目标。如果您需要更具体的帮助,请随时提问。

二、用神经网络生成一首诗,代码说明

要使用神经网络生成一首情诗,首先需要准备一个包含大量情诗的文本数据集,然后训练一个神经网络模型。这里我们使用 Python 和 Keras 库来实现这个过程。

  1. 首先,安装所需库:
pip install numpy keras  
  1. 准备数据集。这里我们使用一个简单的情诗数据集,你可以根据需要替换成其他数据集。数据集格式如下:
poems = [  "亲爱的,你是我的阳光,我的心跳为你起伏。",  "相知相爱,共度春秋,你是我的唯一。",  "在这浪漫的夜晚,月光洒满大地,我想你了。",  #...  
]
  1. 对数据集进行预处理。将所有文本转换为小写,去除标点符号,并将每个单词转换为索引。
import string
def preprocess_text(text):  text = text.lower()  text = text.translate(str.maketrans('', '', string.punctuation))  words = text.split()  return words
words = [preprocess_text(poem) for poem in poems]  
  1. 构建神经网络模型。这里我们使用一个简单的循环神经网络(RNN)模型。
from keras.models import Sequential  
from keras.layers import Embedding, SimpleRNN, Dense
def create_model():  model = Sequential()  model.add(Embedding(len(words), 128, input_length=len(words[0])))  model.add(SimpleRNN(128))  model.add(Dense(len(words), activation='softmax'))  model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])  return model
model = create_model()  
  1. 训练模型。我们需要为模型提供输入数据(X)和输出数据(y)。在这里,我们将每个情诗单词作为一个输入,将该情诗的索引作为输出。
X = [[index] for index, word in enumerate(words)]  
y = [words.index(word) for word in words]
model.fit(X, y, epochs=100, batch_size=32)  
  1. 使用训练好的模型生成一首情诗。首先,将用户输入的文字转换为索引,然后使用模型预测下一个词的索引。
def generate_poem(prompt, model, top_n=10):  input_data = [prompt]  input_data = [[index] for index, word in enumerate(input_data)]  input_data = np.array(input_data, dtype=np.int32)predictions = model.predict(input_data, verbose=0)  next_word_index = np.argmax(predictions)generated_poem = [next_word_index]  for _ in range(top_n):  input_data.append(next_word_index)  input_data = [[index] for index, word in enumerate(input_data)]  input_data = np.array(input_data, dtype=np.int32)  predictions = model.predict(input_data, verbose=0)  next_word_index = np.argmax(predictions)  generated_poem.append(next_word_index)return [words[index] for index in generated_poem]
user_input = "亲爱的,"  
generated_poem = generate_poem(user_input, model)  
print("生成的情诗:", " ".join(generated_poem))  

以上代码将使用神经网络模型生成一首包含给定用户输入的情诗。请注意,这个示例仅作为参考,实际应用时可能需要根据具体需求进行调整。

相关文章:

七夕特辑(一)浪漫表白方式 用神经网络生成一首情诗

目录 一、准备工作二、用神经网络生成一首诗,代码说明 牛郎织女相会,七夕祝福要送来。祝福天下有情人,终成眷属永相伴。 七夕是中国传统的情人节,也是恋人们表达爱意的好时机。在这个特别的日子里,送上温馨的祝福&…...

springboot的 spring.redis.lettuce的max-active、max-idle、min-idle的搭配

在Spring Boot中,使用Lettuce作为Redis客户端是一种常见的选择。Lettuce是一个高性能、可扩展的异步Redis客户端。下面是关于application.yml配置文件中spring.redis.lettuce的一些配置: spring:redis:host: localhostport: 6379database: 0lettuce:poo…...

盒子模型样式

🍓盒子属性 属性名称中文注释备注border设置盒子的边框边框宽度 边框类型 边框颜色border-left设置左边框边框宽度 边框类型 边框颜色border-right设置右边框边框宽度 边框类型 边框颜色border-top设置上边框边框宽度 边框类型 边框颜色border-bottom设置下边框边框…...

动态规划入门之线性动态规划

P1115 最大子段和 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题目要求求连续得一段子串使其累加和最大。 我们做动态规划首先考虑小情况,然后推而广之。 假设三个数1,-2,5. 我们先选1然后我们在-2以及-2加1里边选,我们选…...

基于HTML+CSS+Echarts大屏数据可视化集合共99套

基于HTMLCSSEcharts大屏数据可视化集合共99套 一、介绍二、展示1.大数据展示系统2.物流订单系统3.物流信息系统4.办税渠道监控平台5.车辆综合管控平台 三、其他系统实现四、获取源码 一、介绍 基于HTML/CSS/Echarts的会议展览、业务监控、风险预警、数据分析展示等多种展示需求…...

Leetcode 0814周总结

本周刷题: 88, 108, 121, 219, 228, 268, 283, 303, 349, 350, 414, 448 88 合并两个有序数组 nums1{1, 2, 3 ,0, 0, 0} nums2{2, 5, 6} 合成效果:nums1{1, 2, 2, 3, 5, 6} 思路:【双指针】对两个数组设置双指针,依次比较哪…...

华为网络篇 OSPF的Silent-Interface-33

难度1复杂度1 目录 一、实验拓扑 二、实验步骤 三、实验过程 总结 一、实验拓扑 二、实验步骤 1.搭建如图所示的网络拓扑; 2.初始化各设备,配置相应的IP地址,测试直连网络的连通性; 3.整个网络配置OSPF协议,查看…...

longtext,bigint是什么数据类型

longtext 是一种数据类型,用于在关系型数据库中存储长文本或大段的文本数据。它通常用于存储超过普通文本长度限制的内容,比如文章、博客内容、HTML 代码等。 在多数关系型数据库中,longtext 是一种用于存储可变长度字符数据的类型&#xff…...

Hive无法启动的解决方案

关掉虚拟机后,重新启动后,按照Hadoop和Hive的流程重新启动,发现无法启动成功,特别是元数据服务无法启动,出现以下错误: Exception in thread “main” java.lang.RuntimeException: java.net.ConnectException: Call F…...

华为云零代码新手教学-体验通过Astro Zero快速搭建微信小程序

您将会学到 您将学会如何基于Astro零代码能力,DIY开发,完成问卷、投票、信息收集、流程处理等工作,还能够在线筛选、分析数据。实现一站式快速开发个性化应用,体验轻松拖拽开发的乐趣。 您需要什么 环境准备 注册华为云账号、实…...

【前端】快速掌握HTML+CSS核心知识点

文章目录 1.HTML核心基础知识1.1.编写第一个HTML网页1.2.超链接a标签和路径1.3.图像img标签的用法1.4.表格table标签用法1.5.列表ul、ol、dl标签用法1.6.表单form标签用法1.7.区块标签和行内标签用法 2.CSS核心基础知识2.1.CSS标签选择器viewport布局2.2.CSS样式的几种写法2.3.…...

二叉树算法的框架套路总结

二叉树算法的框架套路总结 总结 本文主要来源于Leetcode用户:https://leetcode.cn/u/labuladong/,感谢写了这么好的文章作者:labuladong 链接:https://leetcode.cn/problems/same-tree/solutions/6558/xie-shu-suan-fa-de-tao-l…...

【ARM 嵌入式 编译 Makefile 系列 2 - Makefile 如何打印信息】

文章目录 Makefile 打印信息方法介绍Makefile 打印信息方法介绍 在Makefile中,我们可以使用echo命令来打印信息。这种方法适用于大多数的 UNIX shell,包括bash、sh、ksh、zsh等。 在 Makefile 中的规则部分,你可以添加 echo 命令来打印一些信息。例如: all: echo "…...

re学习(34)攻防世界-csaw2013reversing2(修改汇编顺序)

参考文章: re学习笔记(27)攻防世界-re-csaw2013reversing2_Forgo7ten的博客-CSDN博客攻防世界逆向入门题之csaw2013reversing2_沐一 林的博客-CSDN博客 三种做法 1、ida静态分析修改指令 main函数反编译的代码 由于运行之后的是乱码&…...

centos 7.9 部署django项目

1、部署框架 主要组件:nginx、uwsgi、django项目 访问页面流程:nginx---》uwsgi---》django---》uwsgi---》nginx 2、部署过程 操作系统:centos 7.9 配置信息:4核4G 50G 内网 eip :10.241.103.216 部署过程&…...

12 正则表达式 | HTTP协议相关介绍

文章目录 正则表达式re模块最基础操作(匹配开头)匹配单个字符匹配多个字符匹配开头结尾匹配分组对于group的理解r的作用re 模块高级用法compilesearchfindall易错点 sub直接替换函数替换 split 根据匹配进行切割字符串,并返回一个列表 python…...

【C语言】数组概述

🚩纸上得来终觉浅, 绝知此事要躬行。 🌟主页:June-Frost 🚀专栏:C语言 🔥该篇将带你了解 一维数组,二维数组等相关知识。 目录: 📘前言:&#x1f…...

8. 实现业务功能--用户注册

目录 1. 顺序图 2. 参数要求 3. 接口规范 4. 创建扩展 Mapper.xml 5. 修改 DAO 6. 创建 Service 接口 7. 实现接口 8. 测试接口 9. 实现 Controller 9.1 密码加密处理 10. 实现前端界面 业务实现过程中主要的包和目录及主要功能: model 包:实体对象 d…...

深入浅出Pytorch函数——torch.nn.init.eye_

分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...

版本控制工具Git集成IDEA的学习笔记(第一篇Gitee)

目录 一、Gitee的使用 1、注册网站会员 2、用户中心 3、创建远程仓库 4、配置SSH免密登录 二、集成IDEA,Git项目搭建 1、本地仓库搭建 1)创建一个新项目 2)打开终端,在当前目录新建一个Git代码库 3)忽略文件 …...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

VisualXML全新升级 | 新增数据库编辑功能

VisualXML是一个功能强大的网络总线设计工具&#xff0c;专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑&#xff08;如DBC、LDF、ARXML、HEX等&#xff09;&#xff0c;并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...

【WebSocket】SpringBoot项目中使用WebSocket

1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖&#xff0c;添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...