七夕特辑(一)浪漫表白方式 用神经网络生成一首情诗
目录
- 一、准备工作
- 二、用神经网络生成一首诗,代码说明
牛郎织女相会,七夕祝福要送来。祝福天下有情人,终成眷属永相伴。
七夕是中国传统的情人节,也是恋人们表达爱意的好时机。在这个特别的日子里,送上温馨的祝福,愿你们的爱情甜蜜如蜜,幸福美满。
爱情是生命中最美好的事物之一,而七夕则是庆祝爱情的日子。无论你们是刚刚开始恋爱,还是已经在一起多年,都应该珍惜彼此的陪伴,相互关爱,共同成长。
在这个充满浪漫和温馨气氛的日子里,我祝愿每一对恋人都能拥有幸福的未来。愿你们的爱情之路坦荡顺畅,无论遇到什么困难,都能携手同行,共同度过。
愿你们的爱情像牛郎织女一样坚定,无论距离有多远,都能心心相印,相互感应。愿你们的爱情像流星一样闪耀,划破夜空,留下永恒的印记。愿你们的爱情像玫瑰一样美丽,绽放出绚烂的色彩,散发出迷人的芳香。
在这个特别的日子里,让我们一起祝福天下有情人,愿你们的爱情甜蜜如蜜,幸福美满。愿你们的未来充满阳光和快乐,每一天都是一个美好的情人节。
今天就介绍一种浪漫表白方式,用神经网络生成一首情诗
一、准备工作
- 准备数据集
要生成一首情诗,首先需要一个包含大量情诗的文本数据集。可以从互联网上下载情诗集,或者自己创建一个。数据集应包括每首情诗的标题和正文。将数据集分为训练集和测试集。 - 数据预处理
对数据集进行预处理。将所有文本转换为小写,去除标点符号,并将每个单词转换为索引。需要为训练集和测试集执行相同的预处理操作。 - 构建神经网络模型
选择一个合适的神经网络模型,例如循环神经网络(RNN)或长短时记忆网络(LSTM)。根据项目需求和计算资源,可以构建一个简单的模型,也可以尝试使用更复杂的模型。 - 训练模型
使用训练集训练模型。调整模型的超参数,如学习率、批次大小和迭代次数,以获得最佳性能。在训练过程中,可以使用验证集来监控模型的性能。 - 评估模型
使用测试集评估模型的性能。计算模型的损失和准确率,并检查其生成情诗的质量。如果模型表现不佳,可以尝试调整超参数或使用更复杂的模型。 - 生成情诗
使用训练好的模型生成一首情诗。首先,将用户输入的文字转换为索引,然后使用模型预测下一个词的索引。重复这个过程,直到生成一首满足长度要求的情诗。 - 完善情诗
生成的情诗可能不够完美,可以对其进行后处理,如检查语法、拼写错误并进行修正。此外,还可以使用自然语言生成(NLG)技术,如基于 GPT-3 的模型,来改进生成的情诗。
为了获得更详细的教程和代码示例,请参阅以下资源:
- Neural Networks and Deep Learning:TensorFlow 官方教程,涵盖了生成式模型和深度学习。
- seq2seq 模型:一个基于 SeqGAN 的翻译和文本生成项目的教程和代码。
- 使用 GPT-3 进行自然语言生成:一个使用 GPT-3 进行自然语言生成的示例和代码。
希望这些资源能帮助您实现项目目标。如果您需要更具体的帮助,请随时提问。
二、用神经网络生成一首诗,代码说明
要使用神经网络生成一首情诗,首先需要准备一个包含大量情诗的文本数据集,然后训练一个神经网络模型。这里我们使用 Python 和 Keras 库来实现这个过程。
- 首先,安装所需库:
pip install numpy keras
- 准备数据集。这里我们使用一个简单的情诗数据集,你可以根据需要替换成其他数据集。数据集格式如下:
poems = [ "亲爱的,你是我的阳光,我的心跳为你起伏。", "相知相爱,共度春秋,你是我的唯一。", "在这浪漫的夜晚,月光洒满大地,我想你了。", #...
]
- 对数据集进行预处理。将所有文本转换为小写,去除标点符号,并将每个单词转换为索引。
import string
def preprocess_text(text): text = text.lower() text = text.translate(str.maketrans('', '', string.punctuation)) words = text.split() return words
words = [preprocess_text(poem) for poem in poems]
- 构建神经网络模型。这里我们使用一个简单的循环神经网络(RNN)模型。
from keras.models import Sequential
from keras.layers import Embedding, SimpleRNN, Dense
def create_model(): model = Sequential() model.add(Embedding(len(words), 128, input_length=len(words[0]))) model.add(SimpleRNN(128)) model.add(Dense(len(words), activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model
model = create_model()
- 训练模型。我们需要为模型提供输入数据(X)和输出数据(y)。在这里,我们将每个情诗单词作为一个输入,将该情诗的索引作为输出。
X = [[index] for index, word in enumerate(words)]
y = [words.index(word) for word in words]
model.fit(X, y, epochs=100, batch_size=32)
- 使用训练好的模型生成一首情诗。首先,将用户输入的文字转换为索引,然后使用模型预测下一个词的索引。
def generate_poem(prompt, model, top_n=10): input_data = [prompt] input_data = [[index] for index, word in enumerate(input_data)] input_data = np.array(input_data, dtype=np.int32)predictions = model.predict(input_data, verbose=0) next_word_index = np.argmax(predictions)generated_poem = [next_word_index] for _ in range(top_n): input_data.append(next_word_index) input_data = [[index] for index, word in enumerate(input_data)] input_data = np.array(input_data, dtype=np.int32) predictions = model.predict(input_data, verbose=0) next_word_index = np.argmax(predictions) generated_poem.append(next_word_index)return [words[index] for index in generated_poem]
user_input = "亲爱的,"
generated_poem = generate_poem(user_input, model)
print("生成的情诗:", " ".join(generated_poem))
以上代码将使用神经网络模型生成一首包含给定用户输入的情诗。请注意,这个示例仅作为参考,实际应用时可能需要根据具体需求进行调整。
相关文章:
七夕特辑(一)浪漫表白方式 用神经网络生成一首情诗
目录 一、准备工作二、用神经网络生成一首诗,代码说明 牛郎织女相会,七夕祝福要送来。祝福天下有情人,终成眷属永相伴。 七夕是中国传统的情人节,也是恋人们表达爱意的好时机。在这个特别的日子里,送上温馨的祝福&…...
springboot的 spring.redis.lettuce的max-active、max-idle、min-idle的搭配
在Spring Boot中,使用Lettuce作为Redis客户端是一种常见的选择。Lettuce是一个高性能、可扩展的异步Redis客户端。下面是关于application.yml配置文件中spring.redis.lettuce的一些配置: spring:redis:host: localhostport: 6379database: 0lettuce:poo…...
盒子模型样式
🍓盒子属性 属性名称中文注释备注border设置盒子的边框边框宽度 边框类型 边框颜色border-left设置左边框边框宽度 边框类型 边框颜色border-right设置右边框边框宽度 边框类型 边框颜色border-top设置上边框边框宽度 边框类型 边框颜色border-bottom设置下边框边框…...
动态规划入门之线性动态规划
P1115 最大子段和 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题目要求求连续得一段子串使其累加和最大。 我们做动态规划首先考虑小情况,然后推而广之。 假设三个数1,-2,5. 我们先选1然后我们在-2以及-2加1里边选,我们选…...
基于HTML+CSS+Echarts大屏数据可视化集合共99套
基于HTMLCSSEcharts大屏数据可视化集合共99套 一、介绍二、展示1.大数据展示系统2.物流订单系统3.物流信息系统4.办税渠道监控平台5.车辆综合管控平台 三、其他系统实现四、获取源码 一、介绍 基于HTML/CSS/Echarts的会议展览、业务监控、风险预警、数据分析展示等多种展示需求…...
Leetcode 0814周总结
本周刷题: 88, 108, 121, 219, 228, 268, 283, 303, 349, 350, 414, 448 88 合并两个有序数组 nums1{1, 2, 3 ,0, 0, 0} nums2{2, 5, 6} 合成效果:nums1{1, 2, 2, 3, 5, 6} 思路:【双指针】对两个数组设置双指针,依次比较哪…...
华为网络篇 OSPF的Silent-Interface-33
难度1复杂度1 目录 一、实验拓扑 二、实验步骤 三、实验过程 总结 一、实验拓扑 二、实验步骤 1.搭建如图所示的网络拓扑; 2.初始化各设备,配置相应的IP地址,测试直连网络的连通性; 3.整个网络配置OSPF协议,查看…...
longtext,bigint是什么数据类型
longtext 是一种数据类型,用于在关系型数据库中存储长文本或大段的文本数据。它通常用于存储超过普通文本长度限制的内容,比如文章、博客内容、HTML 代码等。 在多数关系型数据库中,longtext 是一种用于存储可变长度字符数据的类型ÿ…...
Hive无法启动的解决方案
关掉虚拟机后,重新启动后,按照Hadoop和Hive的流程重新启动,发现无法启动成功,特别是元数据服务无法启动,出现以下错误: Exception in thread “main” java.lang.RuntimeException: java.net.ConnectException: Call F…...
华为云零代码新手教学-体验通过Astro Zero快速搭建微信小程序
您将会学到 您将学会如何基于Astro零代码能力,DIY开发,完成问卷、投票、信息收集、流程处理等工作,还能够在线筛选、分析数据。实现一站式快速开发个性化应用,体验轻松拖拽开发的乐趣。 您需要什么 环境准备 注册华为云账号、实…...
【前端】快速掌握HTML+CSS核心知识点
文章目录 1.HTML核心基础知识1.1.编写第一个HTML网页1.2.超链接a标签和路径1.3.图像img标签的用法1.4.表格table标签用法1.5.列表ul、ol、dl标签用法1.6.表单form标签用法1.7.区块标签和行内标签用法 2.CSS核心基础知识2.1.CSS标签选择器viewport布局2.2.CSS样式的几种写法2.3.…...
二叉树算法的框架套路总结
二叉树算法的框架套路总结 总结 本文主要来源于Leetcode用户:https://leetcode.cn/u/labuladong/,感谢写了这么好的文章作者:labuladong 链接:https://leetcode.cn/problems/same-tree/solutions/6558/xie-shu-suan-fa-de-tao-l…...
【ARM 嵌入式 编译 Makefile 系列 2 - Makefile 如何打印信息】
文章目录 Makefile 打印信息方法介绍Makefile 打印信息方法介绍 在Makefile中,我们可以使用echo命令来打印信息。这种方法适用于大多数的 UNIX shell,包括bash、sh、ksh、zsh等。 在 Makefile 中的规则部分,你可以添加 echo 命令来打印一些信息。例如: all: echo "…...
re学习(34)攻防世界-csaw2013reversing2(修改汇编顺序)
参考文章: re学习笔记(27)攻防世界-re-csaw2013reversing2_Forgo7ten的博客-CSDN博客攻防世界逆向入门题之csaw2013reversing2_沐一 林的博客-CSDN博客 三种做法 1、ida静态分析修改指令 main函数反编译的代码 由于运行之后的是乱码&…...
centos 7.9 部署django项目
1、部署框架 主要组件:nginx、uwsgi、django项目 访问页面流程:nginx---》uwsgi---》django---》uwsgi---》nginx 2、部署过程 操作系统:centos 7.9 配置信息:4核4G 50G 内网 eip :10.241.103.216 部署过程&…...
12 正则表达式 | HTTP协议相关介绍
文章目录 正则表达式re模块最基础操作(匹配开头)匹配单个字符匹配多个字符匹配开头结尾匹配分组对于group的理解r的作用re 模块高级用法compilesearchfindall易错点 sub直接替换函数替换 split 根据匹配进行切割字符串,并返回一个列表 python…...
【C语言】数组概述
🚩纸上得来终觉浅, 绝知此事要躬行。 🌟主页:June-Frost 🚀专栏:C语言 🔥该篇将带你了解 一维数组,二维数组等相关知识。 目录: 📘前言:…...
8. 实现业务功能--用户注册
目录 1. 顺序图 2. 参数要求 3. 接口规范 4. 创建扩展 Mapper.xml 5. 修改 DAO 6. 创建 Service 接口 7. 实现接口 8. 测试接口 9. 实现 Controller 9.1 密码加密处理 10. 实现前端界面 业务实现过程中主要的包和目录及主要功能: model 包:实体对象 d…...
深入浅出Pytorch函数——torch.nn.init.eye_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
版本控制工具Git集成IDEA的学习笔记(第一篇Gitee)
目录 一、Gitee的使用 1、注册网站会员 2、用户中心 3、创建远程仓库 4、配置SSH免密登录 二、集成IDEA,Git项目搭建 1、本地仓库搭建 1)创建一个新项目 2)打开终端,在当前目录新建一个Git代码库 3)忽略文件 …...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
