当前位置: 首页 > news >正文

STM32--ADC模数转换

文章目录

  • ADC简介
  • 逐次逼近型ADC
  • ADC框图
  • 转换模式
  • 数据对齐
  • 转换时间
  • 校准
  • ADC基本结构
  • ADC单通道工程
    • 代码:

ADC简介

STM32的ADC(Analog-Digital Converter)模拟-数字转换器是一种逐次逼近型模拟数字转换器,可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量,建立模拟电路到数字电路的桥梁。拥有18个输入通道,可测量16个外部通道和2个内部信号源。各通道的A/D转换可以单次、连续、扫描或间断模式执行。 ADC的结果可以左对齐或右对齐方式存储在16位数据寄存器中。

模拟看门狗特性允许应用程序检测输入电压是否超出用户定义的高/低阀值。

输入电压范围:0-3.3V,转换结果范围:0~4095

在STM32F103C8T6 ADC资源:ADC1、ADC2,10个外部输入通道
在这里插入图片描述

逐次逼近型ADC

在这里插入图片描述
这个一个经典的逐次逼近型ADC,有8个输入通道,会在通道选择开关进行选择,通过地址锁存和译码进行锁定要输出的信号。利用ADDA,ADDB,ADDC进行锁存,ALE进行译码。

接着到比较器,它将输入信号与DAC(数值模拟转换器)的输出进行比较,在开始转换之前,DAC会输出一个初始值,然后与输入信号进行比较,比较结果会被送到一个控制逻辑电路上,控制逻辑电路根据比较结果调整ADC的输出值,这个过程会重复进行,直到ADC的输出与输入信号精度足够接近。每次调整DAC的输出,都使其更加接近于输入信号的值。当DAC的输出与输入信号的差异在可接受范围内时,转换结束。

逐次逼近型寄存器就是将调整DAC输出的值,通过二分查找的方法,找到接近输入信号的值

最后将最终值放入三态锁存寄存器,就可以进行输出了。

上面的CLOCK是ADC的时钟,通过它可以控制ADC的运行速度和转换精度。由于转换需要一定时间,可通过它控制转换速度。还可以实现与外部时钟同步。

START是运行控制位,EOC是转换结束标志位。

ADC框图

在这里插入图片描述
在这里插入图片描述
我们先从输入口看,大体上与传统的逐次逼近型ADC无差异,这里有16个外部通道和两个内部资源通道。接着会通过数据选择器,可以到注入通道或者规则通道。
在这里插入图片描述

注入通道最多可以有4个输入通道涌入,而规则通道可以有16个输入通道涌入
这里的模拟数字转换器原理就是逐次逼近型ADC的原理。

对于规则通道寄存器,只能存储一个结果,所以如果有多个通道进行转换的话,那么先存储的结果会被后来的结果覆盖过去,这有可能造成结果丢失;这里的DMA请求就会解决这种后果,通过对寄存器地址的移动,让数据存储在不同的地址,这样就不会数据丢失,具体下一章讲解。
那注入通道就是一次可以存储4个结果,注入通道还有一些具体的内容,这里不展开叙述。
ADCCLK就是时钟,可控制采样时间和转换时间;

最后汇集到地址数据总线上,进行输出。

左下角是触发转换的部分,对应逐次逼近型的START信号;对于STM32,有两种触发方式,一种是软件触发,通过在程序中进行编写代码,进行启动;另一种是硬件触发,就是图中的触发源;有定时器各个通道和定时器主模式的输出,还有外部中断引脚触发转换。
在这里插入图片描述

模拟看门狗会根据比较的结果,在一定范围内进行判断,一旦超出所在范围,那么将会产生看门狗事件;

转换结束后,规则通道的信号和注入通道的信号都会产生标志位,标志位可以触发中断使能,使其中断;

转换模式

在ADC中,有两种转换模式,可以搭配扫描模式一同使用;
单次转换模式下, ADC只执行一次转换。连续转换模式中,当前面ADC转换一结束马上就启动另一次转换。扫描模式用来扫描一组模拟通道。

单转换,非扫描模式
在这里插入图片描述
每一次转换都需要进行一次触发,转换结束后会置出一个结束标志位;当进行下一次转换时,又需要进行重新触发和置出结束标志位。

连续转换,非扫描模式
在这里插入图片描述
连续转换,只需要在一开始进行转换触发,那么接下来的每一次转换都不需要进行转换触发;
且转换一次后,会迅速进入下一次转换,每一次EOC会被标志,这里可以理解为转换完成后EOC自动标志了。

单次转换,扫描模式
在这里插入图片描述
扫描模式会对所选通道都进行扫描,由于是单次转换,后来的通道内容会将前面的通道内容进行覆盖,所以如图中所示,到最后只有通道6的内容进行输出;

连续转换,扫描模式
在这里插入图片描述
同样的道理,到最后只有通道6的内容会进行输出;
所以扫描模式都会与DMA进行搭配,让数据不产生丢失的情况

数据对齐

在这里插入图片描述
对于规则通道来说,输出结果只有12位有效,而数据存储器有16位,所以这里就会产生两种方式进行存储;
右对齐:数据高位补0,这是我们常用的方式;
左对齐:数据低位补0,这样操作会使数据扩大16倍;

转换时间

AD转换的步骤:采样,保持,量化,编码

STM32 ADC的总转换时间为:
TCONV = 采样时间 + 12.5个ADC周期

例如:当ADCCLK=14MHz,采样时间为1.5个ADC周期
TCONV = 1.5 + 12.5 = 14个ADC周期 = 1μs

校准

ADC有一个内置自校准模式。校准可大幅减小因内部电容器组的变化而造成的准精度误差。在
校准期间,在每个电容器上都会计算出一个误差修正码(数字值),这个码用于消除在随后的转换
中每个电容器上产生的误差。
建议在每次上电后执行一次校准;
启动校准前, ADC必须处于关电状态超过至少两个ADC时钟周期。

ADC基本结构

在这里插入图片描述
通过输入端口到AD转换器,AD转换器需要触发控制和时钟进行初始化。转换结束后会产生标志位;接着将数据结果储存到AD数据寄存器中。该结构需要开关进行控制启动。

ADC单通道工程

接线方式:
在这里插入图片描述
通过对电位器的旋转,在OLED显示屏上显示数字转换后的结果。

代码:

OLED代码所取处

AD.h

#ifndef __AD_H__
#define __AD_H__void AD_Init();
uint16_t AD_GetValue();#endif

AD.c

#include "stm32f10x.h"                  // Device headervoid AD_Init()
{//开启外设时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1,ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);//配置ADC时钟RCC_ADCCLKConfig(RCC_PCLK2_Div6);  // 72M/6=12MHz//引脚初始化GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AIN; //模拟输入GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOA,&GPIO_InitStructure);//为所选ADC规则通道配置其序列器对应等级和采样时间ADC_RegularChannelConfig(ADC1,ADC_Channel_0,1,ADC_SampleTime_55Cycles5);//ADC结构体成员ADC_InitTypeDef ADC_InitStructure;ADC_InitStructure.ADC_ContinuousConvMode=DISABLE; //指定通道模式为连续转换或者单转换ADC_InitStructure.ADC_DataAlign=ADC_DataAlign_Right; //数据对齐方式ADC_InitStructure.ADC_ExternalTrigConv=ADC_ExternalTrigConv_None; //启动规则通道模拟电压到数字转换的外部触发器ADC_InitStructure.ADC_Mode=ADC_Mode_Independent; //配置ADC为独立模式或者双模式ADC_InitStructure.ADC_NbrOfChannel=1;ADC_InitStructure.ADC_ScanConvMode=DISABLE; //选择是否为扫描模式ADC_Init(ADC1,&ADC_InitStructure);//ADC运行控制ADC_Cmd(ADC1,ENABLE);//重置所选ADC校准寄存器ADC_ResetCalibration(ADC1);//获取ADC复位状态,复位后为0while(ADC_GetResetCalibrationStatus(ADC1));//开始校准ADC_StartCalibration(ADC1);//获取ADC所选标准位状态,校准需要时间,校准好后置0while(ADC_GetCalibrationStatus(ADC1));
}uint16_t AD_GetValue()
{//启动ADC软件转换,触发方式ADC_SoftwareStartConvCmd(ADC1,ENABLE);//检查ADC是否已有标志位,还没有就为SET,有为RESET(EOC)while(ADC_GetFlagStatus(ADC1,ADC_FLAG_EOC)==RESET);//返回一个转换结果return ADC_GetConversionValue(ADC1);
}

main.c

#include "stm32f10x.h"                  // Device header
#include "OLED.h"
#include "AD.h"float V;
int main()
{OLED_Init();AD_Init();OLED_ShowString(1,1,"Value:");//显示电压OLED_ShowString(2,1,"Volatge:0.00");while(1){V=(float)(AD_GetValue()/4095*3.3);OLED_ShowNum(1,7,AD_GetValue(),4);OLED_ShowNum(2,9,V,1);OLED_ShowNum(2,11,(uint16_t)(V*100)%100,2);}
}

数字范围:0-4095
电压范围:0-3.3V
对于显示屏上的波动效果,是正常效果。由于转换总时间在1/12*(55.5+12.5)=5.6微妙;
转换速度是非常快的,而我们又在一个循环中不断显示结果,每次输出结果是由逐次逼近型ADC进行比较输出的,所以不可能每次比较值都非常精准,多多少少会有些误差的波动。

相关文章:

STM32--ADC模数转换

文章目录 ADC简介逐次逼近型ADCADC框图转换模式数据对齐转换时间校准ADC基本结构ADC单通道工程代码: ADC简介 STM32的ADC(Analog-Digital Converter)模拟-数字转换器,是一种逐次逼近型模拟数字转换器,可以将引脚上连续…...

陕西科技大学改考408!附考情分析

改考信息 8月14日,陕西科技大学公布了2024年硕士研究生招生目录(初稿),其中不难发现083500软件工程初试专业课由819数据结构改为408计算机学科专业基础 图片:陕西科技大学24专业目录-软件工程学硕 https://yjszs.sus…...

02.有监督算法——朴素贝叶斯

1.朴素贝叶斯 1.1条件概率 如果两个事件A和B不是相互独立,并且知道事件B已经发生,A在B中的条件概率: P ( A ∣ B ) P ( A B ) P ( B ) P(A|B) {P(AB) \over P(B)} P(A∣B)P(B)P(AB)​ 先验概率: 根据以往经验和分析得到的概…...

前端新手学习路线

文章目录 前端学习路线!特点符号表大纲前言 - 学编程需要的特质一、前端入门⭐️ 开发工具浏览器编辑器文档笔记 ⭐️ HTML⭐️ CSS⭐️ JavaScript✅ ES6 特性 二、巩固基础前端基础知识计算机基础✅ 算法和数据结构✅ 计算机网络✅ 操作系统 软件开发基础✅ 设计模…...

vactor中迭代器失效问题

目录 什么是迭代器失效导致迭代器失效的操作VS和g环境下对与迭代器失效的态度 什么是迭代器失效 迭代器的底层其实就是一个指针,或者对指针进行了封装 vector的迭代器就是一个指针T* 一个迭代器指向某一个空间,此时这块空间被释放了,这个迭…...

电子商务防火墙的作用

1.作为网络安全的屏障 只有经过精心选择的应用协议才能通过防火墙,可使网络环境变得更安全。如 防火墙可以禁止 NFS 协议进出受保护的网络,这样外部的攻击者就不可能利用这些 脆弱的协议来攻击内部网络。防火墙同时可以保护网络免受基于路由的攻击&am…...

「UG/NX」Block UI 选择特征SelectFeature

✨博客主页何曾参静谧的博客📌文章专栏「UG/NX」BlockUI集合📚全部专栏「UG/NX」NX二次开发「UG/NX」BlockUI集合「VS」Visual Studio「QT」QT5程序设计「C/C+&#...

【数据分享】2006-2021年我国城市级别的节约用水相关指标(免费获取\20多项指标)

《中国城市建设统计年鉴》中细致地统计了我国城市市政公用设施建设与发展情况,在之前的文章中,我们分享过基于2006-2021年《中国城市建设统计年鉴》整理的2006—2021年我国城市级别的市政设施水平相关指标、2006-2021年我国城市级别的各类建设用地面积数…...

Azure不可变Blob存储

文章目录 Azure不可变Blob存储介绍Azure不可变性策略实战演练 Azure不可变Blob存储介绍 不可变的存储是一种用于存储业务关键型 Blob 数据的存储方式。与可变存储相反,不可变存储的特点是一旦数据被写入后,便无法再对其进行修改或删除。这种存储方式提供…...

No mapping found for HTTP request with URI

参考: 参考地址 说明 ssm老项目,接过来别人的项目 临时建了一个Controller方便测试用的,结果访问掉不通,报: No mapping found for HTTP request with URIxxxx 这样的错误 解决办法 看了下web,xml配置 在 webmvc-config.xml 配置文件里面添加了几行配置 说明: com.iph.h…...

视频转云存的痛点

现在整个运营商体系里面,有大量的视频转云存储的需求,但是视频云存储有一个比较大的痛点,就是成本! 成本一:存储成本; 我们以1000路2M视频转云存,存储时间为90天为例(B端存储时间有…...

3D医学教学虚拟仿真系统:身临其境感受人体结构和功能

3D医学教学虚拟仿真系统是一种基于虚拟现实技术的教学工具,它可以帮助学生更好地理解和掌握医学知识。这种课件通常包括人体解剖学、生理学、病理学等方面的教学内容,通过三维立体的图像和动画展示,让学生更加直观地了解人体结构和功能。 与传…...

【.net】本地调试运行只能用localhost的问题

【.net】本地调试运行只能用localhost的问题 解决方案 找到到项目目录下 隐藏文件夹 .vs /项目名称/config/applicationhost.config <bindings><binding protocol"http" bindingInformation"*:1738:localhost" /></bindings> 再加一条你…...

营销数字化|企业级 AIGC 工具的「iPhone 时刻」

2007 年&#xff0c;乔布斯发布了第一款 iPhone&#xff0c;从此彻底改变了手机行业的市场走向。iPhone 成功的背后&#xff0c;一个很重要的原因是&#xff1a;它让用户以更简单、更符合直觉的方式来使用手机。 如今&#xff0c;AIGC 工具也在等待它的「iPhone 时刻」&#xf…...

Zookeeper集群单节点启动成功但未同步其他节点数据

首先排查节点启动是否正常&#xff1a; 在zookeeper的bin目录下执行&#xff1a;sh zkServer.sh status 判断当前节点数据leader 还是follower 节点都启动正常&#xff0c;但某一个zookeeper集群节点&#xff08;下面简称“异常节点”&#xff09;不同步其他节点数据&#xf…...

回归预测 | MATLAB实现TSO-LSSVM金枪鱼群算法优化最小二乘支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现TSO-LSSVM金枪鱼群算法优化最小二乘支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现TSO-LSSVM金枪鱼群算法优化最小二乘支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&a…...

第5步---MySQL的DQL查询语句

第5步---MySQL的DQL查询语句 DQL 数据库查询语言 1.基本的查询语句 1.完整得查询得语句 简化版的查询语句 select * from 表名 where 条件; 2.创建用于测试的表 1.创建测试数据 -- DQL -- 创建测试表 DROP TABLE IF EXISTS product; CREATE TABLE IF NOT EXISTS product( pi…...

ChatGpt开源项目完美运行配置-ChatGml2

&#xff08;以下所有软件均可免费在网盘获取。&#xff09; 任务描述 本节任务是安装和配置chatgpt项目所需的软件以及chatgpt项目所需要的python库包&#xff0c;同时编写python代码来完成chatgpt项目的人机对话功能。 实验工具 显卡GTX1070&#xff08;专用内存需要大于等…...

微服务-GateWay(网关)

所谓网关是什么意思&#xff1f; 相当于就是你们小区家的保安&#xff0c;进出小区都得获得保安的同意&#xff0c;守护你们小区的生命财产健康&#xff0c;网关也是如此&#xff0c;对每个请求都严格把关&#xff0c;将合法的或者是获得权限的请求进入服务器 网关的功能&…...

基于X86六轮差速移动机器人运动控制器设计与实现(一)软件与硬件架构

本文研究的六轮差速移动机器人 (Six-Wheeled Differential Mobile Robot &#xff0c; SWDMR) 为了满足资源站到资源站点对点的物资运输&#xff0c;对机器人的跨越障碍能力 有较高的要求。对比传统的四轮移动机器人&#xff0c;六轮移动机器人能够提供更强的驱动 力&#…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...