当前位置: 首页 > news >正文

线性代数的学习和整理7:各种特殊效果矩阵特例(草稿-----未完成)

目录

1 矩阵

1.1 1维的矩阵

1.2 2维的矩阵

1.3 没有3维的矩阵---3维的是3阶张量

2 方阵

3 单位矩阵

3.1 单位矩阵的定义

3.2 单位矩阵的特性

3.3 为什么单位矩阵I是 [1,0;0,1] 而不是[0,1;1,0] 或[1,1;1,1]

3.4 零矩阵

3.4 看下这个矩阵 [0,1;1,0]

3.5 看下这个矩阵 [1,1;1,1]

4 镜像矩阵

5 旋转矩阵

6 伸缩矩阵 放大缩小倍数矩阵

7 剪切矩阵


1 矩阵

1.1 1维的矩阵

  • 行向量,αT
  • 列向量,α

行向量

$$
 \left[
 \begin{matrix}
   1 & 2 & 3 \\
  \end{matrix}
  \right] 
$$

列向量

$$
 \left[
 \begin{matrix}
   1  \\
   4  \\
   7 
  \end{matrix}
  \right] 
$$

1.2 2维的矩阵

  • 一般2维表都可以看作矩阵。
  • 矩阵的每个维度可以是1个数字,也可以是多个数字组成的数组/向量
  • 比如 An*m就是n 行 m列的矩阵

$$
 \left[
 \begin{matrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
  \end{matrix}
  \right] \tag{1}
$$

1.3 没有3维的矩阵---3维的是3阶张量

  • 比如3个坐标轴

1.4  下面本文总结的都是各种特殊效果矩阵特例

  • 单位矩阵
  • 零矩阵
  • 等等

2 方阵: 正方形矩阵

  • 行数和列数相等的矩阵即方阵
  • 比如 An*n就是n 行 n列的矩阵
  • 方阵有很多特殊的属性
  1. 比如虽然并不是,方阵一定有逆矩阵,但是可逆矩阵必须是方阵

$$
 \left[
 \begin{matrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{matrix}
  \right]
$$

3 单位矩阵

3.1 单位矩阵的定义

  • 单位矩阵,一定是这样的[1,0;0,1]
  • 单位矩阵的作用,矩阵A*I=A 
  • 矩阵 [1,0;0,1] 代表将其他矩阵 原样进行映射,不做任何改变
  • 也就是单位矩阵,既不改变矩阵方向,也不改变伸缩矩阵的长短,完全不变

$$
 \left[
 \begin{matrix}
   1 & 0 & 0 \\
   0 & 1 & 0 \\
   0 & 0 & 1
  \end{matrix}
  \right]
$$

3.2 单位矩阵的特性

  • 单位矩阵的特性
  1. A*I=A 
  2. A*A-=I

3.3 为什么单位矩阵I是 [1,0;0,1] 而不是[0,1;1,0] 或[1,1;1,1]

  • 因为 矩阵 [1,0;0,1] 代表将其他矩阵 原样进行映射,不做任何改变
  • 而[1,1;1,1] 没有啥意义
  • 可比较下面的结果,实际理解

3.4 零矩阵

  • [0,0;0,0]
  • 所有的列向量,都坍缩回原点

$$
 \left[
 \begin{matrix}
   0 & 0  \\
   0 & 0  \\
  \end{matrix}
  \right]
$$

3.4 看下这个矩阵 [0,1;1,0]

  • [0,1;1,0]
  • 这个矩阵,和单位矩阵形式恰好相反
  • 从几何效果来看,是镜像矩阵(列向量互换了)

$$
 \left[
 \begin{matrix}
   0 & 1  \\
   1 & 0  \\
  \end{matrix}
  \right]
$$

3.5 看下这个矩阵 [1,1;1,1]

  • [1,1;1,1] 
  • 几何效果是,矩阵的列向量会被变成完全相等(方向,长度都相等)

$$
 \left[
 \begin{matrix}
   1 & 1  \\
   1 & 1  \\
  \end{matrix}
  \right]
$$

4 镜像矩阵

  • [0,1;1,0]
  • 这个矩阵,和单位矩阵形式恰好相反
  • 从几何效果来看,是镜像矩阵(列向量互换了)

$$
 \left[
 \begin{matrix}
   0 & 1  \\
   1 & 0  \\
  \end{matrix}
  \right]
$$

5 旋转矩阵

应该很多种把

6 伸缩矩阵 放大缩小倍数矩阵

  • 把[1,0;0,1] 变成[2,0;0,1],即可实现伸缩效果
  • 比如变成[2,0;0,1],是第1个列向量变长2倍
  • 比如变成[1,0;0,-2],是第2个列向量变长2倍,且方向要相反(向原点的另外一边)

$$
 \left[
 \begin{matrix}
   2 & 0  \\
   0 & 1  \\
  \end{matrix}
  \right]
$$

7 剪切矩阵

相关文章:

线性代数的学习和整理7:各种特殊效果矩阵特例(草稿-----未完成)

目录 1 矩阵 1.1 1维的矩阵 1.2 2维的矩阵 1.3 没有3维的矩阵---3维的是3阶张量 2 方阵 3 单位矩阵 3.1 单位矩阵的定义 3.2 单位矩阵的特性 3.3 为什么单位矩阵I是 [1,0;0,1] 而不是[0,1;1,0] 或[1,1;1,1] 3.4 零矩阵 3.4 看下这个矩阵 [0,1;1,0] 3.5 看下这个矩阵…...

springBoot 配置文件 spring.mvc.throw-exception-if-no-handler-found 参数的作用

在Spring Boot应用中,可以通过配置文件来控制当找不到请求处理器(handler)时是否抛出异常。具体的配置参数是spring.mvc.throw-exception-if-no-handler-found。 默认情况下,该参数的值为false,即当找不到请求处理器时…...

linux部署kafka3.5.1(单机)

一、下载jdk17 kafka3.x版本需要jdk11以上版本才能更好的兼容,jdk11、jdk17都是LTS长期维护版本,而且jdk17支持springboot3.x,所以我选择了openjdk17。 下载地址: Archived OpenJDK GA Releaseshttps://jdk.java.net/archive/ 二、上传jdk安装包解压 …...

css 实现svg动态图标效果

效果演示&#xff1a; 实现思路&#xff1a;主要是通过css的stroke相关属性来设置实现的。 html代码: <svgt"1692441666814"class"icon"viewBox"0 0 1024 1024"version"1.1"xmlns"http://www.w3.org/2000/svg"p-id"…...

软件测试项目实战,电商业务功能测试点汇总(全覆盖)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 支付功能怎么测试…...

LeetCode[274]H指数

难度&#xff1a;Medium 题目&#xff1a; 给你一个整数数组 citations &#xff0c;其中 citations[i] 表示研究者的第 i 篇论文被引用的次数。计算并返回该研究者的 h 指数。 根据维基百科上 h 指数的定义&#xff1a;h 代表“高引用次数” &#xff0c;一名科研人员的 h 指…...

MyBatis-Plus快速开始[MyBatis-Plus系列] - 第482篇

悟纤&#xff1a;师傅&#xff0c;MyBatis-Plus被你介绍的这么神乎其乎&#xff0c;咱们还是来的点实际的吧。 师傅&#xff1a;那真是必须的&#xff0c;学习技术常用的一种方法&#xff0c;就是实践。 悟纤&#xff1a;贱贱更健康。 师傅&#xff1a;这… 师傅&#xff1a;…...

CF1003A Polycarp‘s Pockets 题解

题目传送门 题目意思&#xff1a; 给你 n n n 个数&#xff0c;求出最多相同的数的个数。 这道题目有两种解法。 方法一&#xff1a;桶排 一边输入&#xff0c;一边将第 i i i 个数 a i a_i ai​ 出现的次数存在一个数组 b b b 的第 a i a_i ai​ 个位置。输入完后遍历…...

数据库厂商智臾科技加入龙蜥社区,打造多样化的数据底座

近日&#xff0c;浙江智臾科技有限公司&#xff08;以下简称“智臾科技”&#xff09;正式签署 CLA 贡献者许可协议&#xff0c;加入龙蜥社区&#xff08;OpenAnolis&#xff09;。 智臾科技主创团队从 2012 年开始投入研发 DolphinDB。DolphinDB 作为一款基于高性能时序数据库…...

一天赚四五十的副业,可以试试这几种

大家都希望能够有额外的零花钱&#xff0c;尤其是对于学生和不收入稳定的人来说。今天&#xff0c;我将分享一些简单实用的赚钱技巧&#xff0c;帮助你每天赚取四五十的零花钱&#xff0c;让你的钱包更丰盈。 第一种&#xff1a;蚂蚁路客和友活来了 支付宝旗下两款接任务拍门…...

OpenCV 中的色彩空间 (C++ / Python)

在本教程中,我们将了解计算机视觉中使用的流行色彩空间,并将其用于基于颜色的分割。我们还将分享 C++ 和 Python 的演示代码。...

邀请函 | 高质量区块链·元宇宙—标准行系列沙龙(北京站)即将开启

区块链、元宇宙是近年来备受关注的新兴技术&#xff0c;也是推动数字经济发展的重要力量。高质量标准引领高质量发展&#xff0c;加快形成标准引领&#xff0c;充分释放区块链、元宇宙对实体经济牵引赋能效应&#xff0c;推进形成相关产业体系高质量发展新格局刻不容缓。 为进…...

php hmacsha256加密的算法

HMAC-SHA256是一种基于哈希算法的消息认证码算法&#xff0c;用于验证数据的完整性和真实性。它将密钥和数据一起进行哈希运算&#xff0c;生成一个固定长度的摘要值。只有知道密钥的人才能够验证该摘要值的真实性。 在PHP中&#xff0c;可以使用hash_hmac函数来计算HMAC-SHA2…...

Spring源码编译教程

1. Spring版本是5.3.10 2. 下载gradle依赖 Spring是通过gradle来编译源码下载依赖的&#xff0c;.gradle文件夹可以理解为gradle的仓库&#xff08;和mave类似&#xff0c;不懂gradle的先这么理解&#xff09;&#xff0c;而我给大家的这个仓库&#xff0c;只包含了Spring源码…...

Python入门教程 | Python简介和环境搭建

Python 简介 Python是一种高级编程语言&#xff0c;由荷兰人Guido van Rossum于1991年创建。它以其简单易学、可读性强和丰富的生态系统而受到广泛喜爱。它被广泛应用于各个领域&#xff0c;包括Web开发、科学计算、数据分析、人工智能等。 Python的特点 简洁易读&#xff1a…...

阿里云ECS服务器企业级和共享型介绍_企业级常见问题解答FAQ

阿里云企业级服务器是什么&#xff1f;企业级和共享型有什么区别&#xff1f;企业级服务器具有独享且稳定的计算、存储、网络资源&#xff0c;如ECS计算型c6、通用型g8等都是企业级实例&#xff0c;阿里云百科分享什么是企业级云服务器、企业级实例的优势、企业级和共享型云服务…...

leetcode做题笔记92. 反转链表 II

给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 思路一&#xff1a;头插法 struct ListNode *reverseBetween(struct ListNode *h…...

springboot引入druid解析sql

一、前言 在开发中&#xff0c;有时我们可能会需要获取SQL中的表名&#xff0c;那么因为不同的数据源类型SQL会存在部分差异&#xff0c;那么我们就可以使用alibaba 的druid包实现不同的数据源类型的sql解析。 二、引入相关maven依赖 <dependency><groupId>com.a…...

学习笔记十九:Pod常见的状态和重启策略

Pod常见的状态和重启策略 常见的pod状态第一阶段&#xff1a;第二阶段&#xff1a;扩展&#xff1a; pod重启策略测试Always重启策略正常停止容器内的tomcat服务非正常停止容器里的tomcat服务 测试never重启策略正常停止容器里的tomcat服务非正常停止容器里的tomcat服务 测试On…...

Spring的ApplicationEvent简单使用

ApplicationEvent以及Listener是Spring为我们提供的一个事件监听、订阅的实现&#xff0c;内部实现原理是观察者设计模式&#xff0c;设计初衷也是为了系统业务逻辑之间的解耦&#xff0c;提高可扩展性以及可维护性。事件发布者并不需要考虑谁去监听&#xff0c;监听具体的实现…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系&#xff0c;可直观判断线性相关、非线性相关或无相关关系&#xff0c;点的分布密…...

用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章

用 Rust 重写 Linux 内核模块实战&#xff1a;迈向安全内核的新篇章 ​​摘要&#xff1a;​​ 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言&#xff0c;受限于 C 语言本身的内存安全和并发安全问题&#xff0c;开发复杂模块极易引入难以…...