当前位置: 首页 > news >正文

线性代数的学习和整理7:各种特殊效果矩阵特例(草稿-----未完成)

目录

1 矩阵

1.1 1维的矩阵

1.2 2维的矩阵

1.3 没有3维的矩阵---3维的是3阶张量

2 方阵

3 单位矩阵

3.1 单位矩阵的定义

3.2 单位矩阵的特性

3.3 为什么单位矩阵I是 [1,0;0,1] 而不是[0,1;1,0] 或[1,1;1,1]

3.4 零矩阵

3.4 看下这个矩阵 [0,1;1,0]

3.5 看下这个矩阵 [1,1;1,1]

4 镜像矩阵

5 旋转矩阵

6 伸缩矩阵 放大缩小倍数矩阵

7 剪切矩阵


1 矩阵

1.1 1维的矩阵

  • 行向量,αT
  • 列向量,α

行向量

$$
 \left[
 \begin{matrix}
   1 & 2 & 3 \\
  \end{matrix}
  \right] 
$$

列向量

$$
 \left[
 \begin{matrix}
   1  \\
   4  \\
   7 
  \end{matrix}
  \right] 
$$

1.2 2维的矩阵

  • 一般2维表都可以看作矩阵。
  • 矩阵的每个维度可以是1个数字,也可以是多个数字组成的数组/向量
  • 比如 An*m就是n 行 m列的矩阵

$$
 \left[
 \begin{matrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
  \end{matrix}
  \right] \tag{1}
$$

1.3 没有3维的矩阵---3维的是3阶张量

  • 比如3个坐标轴

1.4  下面本文总结的都是各种特殊效果矩阵特例

  • 单位矩阵
  • 零矩阵
  • 等等

2 方阵: 正方形矩阵

  • 行数和列数相等的矩阵即方阵
  • 比如 An*n就是n 行 n列的矩阵
  • 方阵有很多特殊的属性
  1. 比如虽然并不是,方阵一定有逆矩阵,但是可逆矩阵必须是方阵

$$
 \left[
 \begin{matrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{matrix}
  \right]
$$

3 单位矩阵

3.1 单位矩阵的定义

  • 单位矩阵,一定是这样的[1,0;0,1]
  • 单位矩阵的作用,矩阵A*I=A 
  • 矩阵 [1,0;0,1] 代表将其他矩阵 原样进行映射,不做任何改变
  • 也就是单位矩阵,既不改变矩阵方向,也不改变伸缩矩阵的长短,完全不变

$$
 \left[
 \begin{matrix}
   1 & 0 & 0 \\
   0 & 1 & 0 \\
   0 & 0 & 1
  \end{matrix}
  \right]
$$

3.2 单位矩阵的特性

  • 单位矩阵的特性
  1. A*I=A 
  2. A*A-=I

3.3 为什么单位矩阵I是 [1,0;0,1] 而不是[0,1;1,0] 或[1,1;1,1]

  • 因为 矩阵 [1,0;0,1] 代表将其他矩阵 原样进行映射,不做任何改变
  • 而[1,1;1,1] 没有啥意义
  • 可比较下面的结果,实际理解

3.4 零矩阵

  • [0,0;0,0]
  • 所有的列向量,都坍缩回原点

$$
 \left[
 \begin{matrix}
   0 & 0  \\
   0 & 0  \\
  \end{matrix}
  \right]
$$

3.4 看下这个矩阵 [0,1;1,0]

  • [0,1;1,0]
  • 这个矩阵,和单位矩阵形式恰好相反
  • 从几何效果来看,是镜像矩阵(列向量互换了)

$$
 \left[
 \begin{matrix}
   0 & 1  \\
   1 & 0  \\
  \end{matrix}
  \right]
$$

3.5 看下这个矩阵 [1,1;1,1]

  • [1,1;1,1] 
  • 几何效果是,矩阵的列向量会被变成完全相等(方向,长度都相等)

$$
 \left[
 \begin{matrix}
   1 & 1  \\
   1 & 1  \\
  \end{matrix}
  \right]
$$

4 镜像矩阵

  • [0,1;1,0]
  • 这个矩阵,和单位矩阵形式恰好相反
  • 从几何效果来看,是镜像矩阵(列向量互换了)

$$
 \left[
 \begin{matrix}
   0 & 1  \\
   1 & 0  \\
  \end{matrix}
  \right]
$$

5 旋转矩阵

应该很多种把

6 伸缩矩阵 放大缩小倍数矩阵

  • 把[1,0;0,1] 变成[2,0;0,1],即可实现伸缩效果
  • 比如变成[2,0;0,1],是第1个列向量变长2倍
  • 比如变成[1,0;0,-2],是第2个列向量变长2倍,且方向要相反(向原点的另外一边)

$$
 \left[
 \begin{matrix}
   2 & 0  \\
   0 & 1  \\
  \end{matrix}
  \right]
$$

7 剪切矩阵

相关文章:

线性代数的学习和整理7:各种特殊效果矩阵特例(草稿-----未完成)

目录 1 矩阵 1.1 1维的矩阵 1.2 2维的矩阵 1.3 没有3维的矩阵---3维的是3阶张量 2 方阵 3 单位矩阵 3.1 单位矩阵的定义 3.2 单位矩阵的特性 3.3 为什么单位矩阵I是 [1,0;0,1] 而不是[0,1;1,0] 或[1,1;1,1] 3.4 零矩阵 3.4 看下这个矩阵 [0,1;1,0] 3.5 看下这个矩阵…...

springBoot 配置文件 spring.mvc.throw-exception-if-no-handler-found 参数的作用

在Spring Boot应用中,可以通过配置文件来控制当找不到请求处理器(handler)时是否抛出异常。具体的配置参数是spring.mvc.throw-exception-if-no-handler-found。 默认情况下,该参数的值为false,即当找不到请求处理器时…...

linux部署kafka3.5.1(单机)

一、下载jdk17 kafka3.x版本需要jdk11以上版本才能更好的兼容,jdk11、jdk17都是LTS长期维护版本,而且jdk17支持springboot3.x,所以我选择了openjdk17。 下载地址: Archived OpenJDK GA Releaseshttps://jdk.java.net/archive/ 二、上传jdk安装包解压 …...

css 实现svg动态图标效果

效果演示&#xff1a; 实现思路&#xff1a;主要是通过css的stroke相关属性来设置实现的。 html代码: <svgt"1692441666814"class"icon"viewBox"0 0 1024 1024"version"1.1"xmlns"http://www.w3.org/2000/svg"p-id"…...

软件测试项目实战,电商业务功能测试点汇总(全覆盖)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 支付功能怎么测试…...

LeetCode[274]H指数

难度&#xff1a;Medium 题目&#xff1a; 给你一个整数数组 citations &#xff0c;其中 citations[i] 表示研究者的第 i 篇论文被引用的次数。计算并返回该研究者的 h 指数。 根据维基百科上 h 指数的定义&#xff1a;h 代表“高引用次数” &#xff0c;一名科研人员的 h 指…...

MyBatis-Plus快速开始[MyBatis-Plus系列] - 第482篇

悟纤&#xff1a;师傅&#xff0c;MyBatis-Plus被你介绍的这么神乎其乎&#xff0c;咱们还是来的点实际的吧。 师傅&#xff1a;那真是必须的&#xff0c;学习技术常用的一种方法&#xff0c;就是实践。 悟纤&#xff1a;贱贱更健康。 师傅&#xff1a;这… 师傅&#xff1a;…...

CF1003A Polycarp‘s Pockets 题解

题目传送门 题目意思&#xff1a; 给你 n n n 个数&#xff0c;求出最多相同的数的个数。 这道题目有两种解法。 方法一&#xff1a;桶排 一边输入&#xff0c;一边将第 i i i 个数 a i a_i ai​ 出现的次数存在一个数组 b b b 的第 a i a_i ai​ 个位置。输入完后遍历…...

数据库厂商智臾科技加入龙蜥社区,打造多样化的数据底座

近日&#xff0c;浙江智臾科技有限公司&#xff08;以下简称“智臾科技”&#xff09;正式签署 CLA 贡献者许可协议&#xff0c;加入龙蜥社区&#xff08;OpenAnolis&#xff09;。 智臾科技主创团队从 2012 年开始投入研发 DolphinDB。DolphinDB 作为一款基于高性能时序数据库…...

一天赚四五十的副业,可以试试这几种

大家都希望能够有额外的零花钱&#xff0c;尤其是对于学生和不收入稳定的人来说。今天&#xff0c;我将分享一些简单实用的赚钱技巧&#xff0c;帮助你每天赚取四五十的零花钱&#xff0c;让你的钱包更丰盈。 第一种&#xff1a;蚂蚁路客和友活来了 支付宝旗下两款接任务拍门…...

OpenCV 中的色彩空间 (C++ / Python)

在本教程中,我们将了解计算机视觉中使用的流行色彩空间,并将其用于基于颜色的分割。我们还将分享 C++ 和 Python 的演示代码。...

邀请函 | 高质量区块链·元宇宙—标准行系列沙龙(北京站)即将开启

区块链、元宇宙是近年来备受关注的新兴技术&#xff0c;也是推动数字经济发展的重要力量。高质量标准引领高质量发展&#xff0c;加快形成标准引领&#xff0c;充分释放区块链、元宇宙对实体经济牵引赋能效应&#xff0c;推进形成相关产业体系高质量发展新格局刻不容缓。 为进…...

php hmacsha256加密的算法

HMAC-SHA256是一种基于哈希算法的消息认证码算法&#xff0c;用于验证数据的完整性和真实性。它将密钥和数据一起进行哈希运算&#xff0c;生成一个固定长度的摘要值。只有知道密钥的人才能够验证该摘要值的真实性。 在PHP中&#xff0c;可以使用hash_hmac函数来计算HMAC-SHA2…...

Spring源码编译教程

1. Spring版本是5.3.10 2. 下载gradle依赖 Spring是通过gradle来编译源码下载依赖的&#xff0c;.gradle文件夹可以理解为gradle的仓库&#xff08;和mave类似&#xff0c;不懂gradle的先这么理解&#xff09;&#xff0c;而我给大家的这个仓库&#xff0c;只包含了Spring源码…...

Python入门教程 | Python简介和环境搭建

Python 简介 Python是一种高级编程语言&#xff0c;由荷兰人Guido van Rossum于1991年创建。它以其简单易学、可读性强和丰富的生态系统而受到广泛喜爱。它被广泛应用于各个领域&#xff0c;包括Web开发、科学计算、数据分析、人工智能等。 Python的特点 简洁易读&#xff1a…...

阿里云ECS服务器企业级和共享型介绍_企业级常见问题解答FAQ

阿里云企业级服务器是什么&#xff1f;企业级和共享型有什么区别&#xff1f;企业级服务器具有独享且稳定的计算、存储、网络资源&#xff0c;如ECS计算型c6、通用型g8等都是企业级实例&#xff0c;阿里云百科分享什么是企业级云服务器、企业级实例的优势、企业级和共享型云服务…...

leetcode做题笔记92. 反转链表 II

给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 思路一&#xff1a;头插法 struct ListNode *reverseBetween(struct ListNode *h…...

springboot引入druid解析sql

一、前言 在开发中&#xff0c;有时我们可能会需要获取SQL中的表名&#xff0c;那么因为不同的数据源类型SQL会存在部分差异&#xff0c;那么我们就可以使用alibaba 的druid包实现不同的数据源类型的sql解析。 二、引入相关maven依赖 <dependency><groupId>com.a…...

学习笔记十九:Pod常见的状态和重启策略

Pod常见的状态和重启策略 常见的pod状态第一阶段&#xff1a;第二阶段&#xff1a;扩展&#xff1a; pod重启策略测试Always重启策略正常停止容器内的tomcat服务非正常停止容器里的tomcat服务 测试never重启策略正常停止容器里的tomcat服务非正常停止容器里的tomcat服务 测试On…...

Spring的ApplicationEvent简单使用

ApplicationEvent以及Listener是Spring为我们提供的一个事件监听、订阅的实现&#xff0c;内部实现原理是观察者设计模式&#xff0c;设计初衷也是为了系统业务逻辑之间的解耦&#xff0c;提高可扩展性以及可维护性。事件发布者并不需要考虑谁去监听&#xff0c;监听具体的实现…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...