MATLAB——线性神经网络预测程序
有导师学习神经网络的分类-鸢尾花种类识别
学习目标: 线性神经网络
收敛速度和精度比前一篇博客的感知器神经网络要高,
主要应用在函数逼近,信号预测,模式识别,系统辨识方面
clear all;
close all;
P=[1.1 2.2 3.1 4.1];
T=[2.2 4.02 5.8 8.1];
lr=maxlinlr(P); %获取最大学习速率
net=newlin(minmax(P),1,0,lr); %建立线性神经网络
net.trainParam.epochs=500; %训练 做多500次
net.trainParam.goal=0.04; %训练误差设定为0.04
net=train(net,P,T);
Y=sim(net,P) %仿真
利用线性神经网络进行信号的预测
clear all;
close all;
t=0:pi/10:4*pi;
X=t.*sin(t);
T=2*X+3;
figure;
plot(t,X,'+-',t,T,'+--');
legend('系统输入','系统输出');
set(gca,'xlim',[0 4*pi]);
set(gcf,'position',[50,50,400,400]);
net=newlind(X,T);
y=sim(net,X);
figure;
plot(t,y,'+:',t,y-T,'r:');
legend('网络预测输出','误差');
set(gca,'xlim',[0 4*pi]);
set(gcf,'position',[50,50,400,400]);
下面为重复程序
利用线性神经网络进行信号的预测
clear all;
close all;
t=0:pi/10:4*pi;
X=t.*sin(t);
T=2*X+3;
figure;
plot(t,X,'+-',t,T,'+--');
legend('系统输入','系统输出');
set(gca,'xlim',[0 4*pi]);
set(gcf,'position',[50,50,400,400]);
net=newlind(X,T);
y=sim(net,X);
figure;
plot(t,y,'+:',t,y-T,'r:');
legend('网络预测输出','误差');
set(gca,'xlim',[0 4*pi]);
set(gcf,'position',[50,50,400,400]);
相关文章:
MATLAB——线性神经网络预测程序
有导师学习神经网络的分类-鸢尾花种类识别 学习目标: 线性神经网络收敛速度和精度比前一篇博客的感知器神经网络要高, 主要应用在函数逼近,信号预测,模式识别,系统辨识方面 clear all; close all; P[1.1 2.2 3.1 4.1]…...

面试之快速学习STL-迭代适配器
先放一张大图 参考:http://c.biancheng.net/view/7255.html 1. 反向迭代器 例子: std::list<int> values{1,2,3,4,5};auto start_it values.rbegin();const auto end_it values.rend();//start_it end_it std::reverse_iterator<std::lis…...

【Linux】【驱动】杂项设备驱动
【Linux】【驱动】杂项设备驱动 Linux三大设备驱动1. 我们这节课要讲的杂项设备驱动是属于我们这三大设备驱动里面的哪个呢?2.杂项设备除了比字符设备代码简单,还有别的区别吗?3.主设备号和次设备号是什么? 挂载驱动 杂项设备驱动是字符设备驱动的一种࿰…...

【HCIP】10.路由策略
📎13 路由策略与路由控制.pptx 通过修改路由的属性,影响了路由的生成及选路,最终影响了转发流量的路径;控制平面。 ACL IP prefix Filter-Policy Router-Policy 笔记...

【腾讯云Cloud Studio实战训练营】使用Cloud Studio社区版快速构建React完成点餐H5页面还原
陈老老老板🦸 👨💻本文专栏:生活(主要讲一下自己生活相关的内容) 👨💻本文简述:生活就像海洋,只有意志坚强的人,才能到达彼岸。 👨💻上一篇…...

测试开发工程必备技能之一:Mock的使用
1. 背景 在实际产品开发过程中,某个服务或前端依赖一个服务接口,该接口可能依赖多个底层服务或模块,或第三方接口,比如说服务 A 依赖服务B,服务B又依赖服务 C 这种依赖的问题会导致原本的需求目的是要验证服务A&…...

Qbytearray:从十六进制字符串转字节一些注意事项
1、从十六进制字符串转字节后,按字节使用时 QByteArray data QByteArray::fromHex("cc94");printf("%x %x\n",data.at(0),data.at(0)&0xff);//若超过127,会不一样printf("%d %d\n",data.at(0),data.at(0)&0xff);…...

【Docker】Docker的使用案例以及未来发展、Docker Hub 服务、环境安全的详细讲解
前言 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows操作系统的机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。 📕作者简介:热…...
Redis有哪几种内存淘汰策略?
推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 「java、python面试题」来自UC网盘app分享,打开手机app,额外获得1T空间 https://dr…...

操作系统练习:在Linux上创建进程,及查看进程状态
说明 进程在执行过程中可以创建多个新的进程。创建进程称为“父进程”,新的进程称为“子进程”。每个新的进程可以再创建其他进程,从而形成进程树。 每个进程都有一个唯一的进程标识符(process identifier,pid)。在L…...

Java虚拟机(JVM):垃圾收集算法
目录 一、分代收集理论 二、标记-清除算法 三、标记-复制算法 四、标记-整理算法 一、分代收集理论 分代收集理论建立在两个分代假说之上: 1、弱分代假说:绝大多数对象都是朝生夕灭的。 2、强分代假说:熬过越多次垃圾收集过程的对象就…...
【爬虫】Requests库的使用
这个库比我们上次说的 urllib 可是要牛逼一丢丢的。通过它我们可以用更少的代码,模拟浏览器操作。 不多说,直接上手代码。 requests 常见用法 mport requests# get请求网站 r requests.get(https://www.baidu.com/) # 获取服务器响应文本内容 r.text …...

了解生成对抗网络 (GAN)
一、介绍 Yann LeCun将其描述为“过去10年来机器学习中最有趣的想法”。当然,来自深度学习领域如此杰出的研究人员的赞美总是对我们谈论的主题的一个很好的广告!事实上,生成对抗网络(简称GAN)自2014年由Ian J. Goodfel…...

opencv-人脸关键点定位
#导入工具包 from collections import OrderedDict import numpy as np import argparse import dlib import cv2#https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/ #http://dlib.net/files/# 参数 ap argparse.ArgumentParser() ap.add_argument("-p&quo…...
言语理解与表达 郭熙(一)
40题 35min 逻辑填空 (20题) 题型:实词填空;成语填空;混搭填空 解题思路 词义辨析:词义侧重;固定搭配;程度较重;感情色彩 语境分析: 关联关系ÿ…...

【stable-diffusion使用扩展+插件和模型资源(上】
文章目录 前言一、插件推荐1.qrcode-monster2.sd-webui-openpose-editor3.sd-webui-depth-lib4.roop(换脸插件)5.sd-webui-qrcode-toolkit(艺术二维码)5.光源控制6.二次元转真人7.动态视频转场(loopback-waveÿ…...

面试之快速学习STL-无序关联式容器
和关联式容器一样,无序容器也使用键值对(pair 类型)的方式存储数据。不过,本教程将二者分开进行讲解,因为它们有本质上的不同: 关联式容器的底层实现采用的树存储结构,更确切的说是红黑树结构&a…...

C++线程库
C线程库是C11新增的重要的技术之一,接下来来简单学习一下吧! thread类常用接口 函数名功能thread()构造一个线程对象,没有关联任何线程函数,即没有启动任何线程。thread(fn, args1, args2, ...)构造一个线程对象,并…...

一文看懂群晖 NAS 安装 Mysql 远程访问连接
文章目录 1. 安装Mysql2. 安装phpMyAdmin3. 修改User 表4. 本地测试连接5. 安装cpolar6. 配置公网访问地址7. 固定连接公网地址 群晖安装MySQL具有高效、安全、可靠、灵活等优势,可以为用户提供一个优秀的数据管理和分析环境。同时具有良好的硬件性能和稳定性&#…...

永久设置pip指定国内镜像源(windows内)
1.首先列出国内四个镜像源网站: 一、清华源 https://pypi.tuna.tsinghua.edu.cn/simple/ 二、阿里源 https://mirrors.aliyun.com/pypi/simple 三、中科大源 https://pypi.mirrors.ustc.edu.cn/simple/ 四、豆瓣源 http://pypi.douban.com/simple/ 2.一般下载所需要…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...

DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...

华为云Flexus+DeepSeek征文 | 基于Dify构建具备联网搜索能力的知识库问答助手
华为云FlexusDeepSeek征文 | 基于Dify构建具备联网搜索能力的知识库问答助手 一、构建知识库问答助手引言二、构建知识库问答助手环境2.1 基于FlexusX实例的Dify平台2.2 基于MaaS的模型API商用服务 三、构建知识库问答助手实战3.1 配置Dify环境3.2 创建知识库问答助手3.3 使用知…...
Flask和Django,你怎么选?
Flask 和 Django 是 Python 两大最流行的 Web 框架,但它们的设计哲学、目标和适用场景有显著区别。以下是详细的对比: 核心区别:哲学与定位 Django: 定位: "全栈式" Web 框架。奉行"开箱即用"的理念。 哲学: "包含…...
【仿生机器人】刀剑神域——爱丽丝苏醒计划,需求文档
仿生机器人"爱丽丝"系统架构设计需求文档 一、硬件基础 已完成头部和颈部硬件搭建 25个舵机驱动表情系统 颈部旋转功能 眼部摄像头(视觉输入) 麦克风阵列(听觉输入) 颈部发声装置(语音输出)…...
DeepSeek11-Ollama + Open WebUI 搭建本地 RAG 知识库全流程指南
🛠️ Ollama Open WebUI 搭建本地 RAG 知识库全流程指南 💻 一、环境准备 # 1. 安装 Docker 和 Docker Compose sudo apt update && sudo apt install docker.io docker-compose -y# 2. 添加用户到 docker 组(避免 sudo 权限&…...