回归预测 | MATLAB实现SA-BP模拟退火算法优化BP神经网络多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现SA-BP模拟退火算法优化BP神经网络多输入单输出回归预测(多指标,多图)
目录
- 回归预测 | MATLAB实现SA-BP模拟退火算法优化BP神经网络多输入单输出回归预测(多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览



基本介绍
回归预测 | MATLAB实现SA-BP模拟退火算法优化BP神经网络多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现SA-BP模拟退火算法优化BP神经网络多输入单输出回归预测(多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:
回归预测 | MATLAB实现SA-BP模拟退火算法优化BP神经网络多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现SA-BP模拟退火算法优化BP神经网络多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现SA-BP模拟退火算法优化BP神经网络多输入单输出回归预测(多指标,多图)效果一览基本介…...
springMVC 已解密的登录请求
问题描述: 解决方案: 1.对用户所输入的密码在页面进行MD5加密并反馈至密码输入框。 2. 手动生成SSL安全访问证书;在此不做介绍,相关方法可通过网上查找; 3. 将产品HTTP访问方式改为SSL安全访问方式;在Ap…...
机器学习赋能乳腺癌预测:如何使用贝叶斯分级进行精确诊断?
一、引言 乳腺癌是女性最常见的恶性肿瘤之一,也会发生在男性身上。每年全球有数百万人被诊断出乳腺癌,对患者的生活和健康造成了巨大的影响。早期的乳腺癌检测和准确的诊断对于提高治疗的成功率至关重要。然而,乳腺癌的早期诊断面临着许多挑战…...
Java后端开发面试题——框架篇
Spring框架中的bean是单例的吗?Spring框架中的单例bean是线程安全的吗? singleton : bean在每个Spring IOC容器中只有一个实例。 prototype:一个bean的定义可以有多个实例。 Spring bean并没有可变的状态(比如Service类和DAO类),…...
【新版】系统架构设计师 - 系统测试与维护
个人总结,仅供参考,欢迎加好友一起讨论 文章目录 架构 - 系统测试与维护考点摘要软件测试软件测试 - 测试类型软件测试 - 静态测试软件测试 - 动态测试软件测试 - 测试阶段软件测试 - 测试阶段 - 单元测试软件测试 - 测试阶段 - 集成测试软件测试 - 测试…...
使用 useEffect 和 reactStrictMode:优化 React 组件的性能和可靠性
使用useEffect和React.StrictMode是一种优化React组件性能和可靠性的常见做法。下面是关于如何使用这两个特性的示例: import React, { useEffect } from react;function MyComponent() {useEffect(() > {// 在组件挂载/更新时执行的副作用代码// 可以进行数据获…...
商业智能BI是什么都不明白,如何实现数字化?
2021年下半年中国商业智能软件市场规模为4.8亿美元,2021年度市场规模达到7.8亿美元,同比增长34.9%,呈现飞速增长的趋势。数字化时代,商业智能BI对于企业的落地应用有着巨大价值,逐渐成为了现代企业信息化、数字化转型中…...
【五子棋】
五子棋 文章目录 五子棋前言一、登录功能二.哈希表管理用户的会话和房间三.基于Websocket连接开发的功能1.匹配功能2.游戏房间3.挑战功能4.人机对战5.聊天功能 前言 这篇博客主要详细介绍我的五子棋项目的核心功能的实现细节,也就是详细介绍五子棋各个功能是如何实…...
docker 01(初识docker)
一、docker概念 Docker是一个开源的应用容器引擎;诞生于2013年初,基于Go 语言实现,dotCloud公司出品(后改名为Dockerlnc);Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的Linux …...
爬虫逆向实战(十九)--某号站登录
一、数据接口分析 主页地址:某号站 1、抓包 通过抓包可以发现登录接口 2、判断是否有加密参数 请求参数是否加密? 通过查看“载荷”模块可以发现有一个jsondata_rsa的加密参数 请求头是否加密? 无响应是否加密? 无cookie是否…...
linux环境docker安装mysql
1:docker拉取mysql镜像(可有自己选择mysql版本) [rootlocalhost ~]# docker pull mysql:8.02: Docker 中启动 MySQL 容器,可以使用以下命令: docker run -d --name mysql_container -v ./sql:/docker-…...
taro h5 formData上传图片的坑-Required request part ‘file‘ is not present
描述:用formData上传图片 1、生成formData const formData new FormData() formData.append(file, data) // data是file formData.append(xxx, xxx) // 添加其他参数2、用taro.request请求 Taro.request({url: xxxx,data: formData,header: {Content-Type: mult…...
GNU GRUB version 2.06 Minimal Bash-lke line editing is supported 问题修复
一、问题背景 博主喜欢折腾系统,电脑原来有一个windows系统,想整一个Linux双系统,结果开机时出现以下画面: GNU GRUB version 2.06 Minimal Bash-lke line editing is supported. TAB lists possible comand completions, Anywh…...
Embedding 向量生成GPT数据使用相关
如果使用python3.6的版本,使用pycharm创建工程,那么默认会使用 docx包,这样运行程序会爆异常,突然想起以前请教的一个大神,想当 初,这个问题困扰了我 两天时间,在此记录一下: pytho…...
Jenkins工具系列 —— 配置邮箱 每个job下动态设置临时发送人
文章目录 安装插件添加邮箱认证邮箱申请(以QQ邮箱网页为例)jenkins添加邮箱认证 jenkins设置邮箱相关信息配置全局邮件单个JOB邮箱配置 安装插件 点击 左侧的 Manage Jenkins —> Plugins ——> 左侧的 Available plugins 添加邮箱认证 邮箱申请…...
华纳云:ubuntu中怎么查看进程占用的端口
在Ubuntu中,你可以使用以下命令来查看进程占用的端口: 打开终端(Terminal)。 使用 netstat 命令来查看进程占用的端口。以下是几个常用的命令示例: 查看所有进程占用的端口和地址: netstat -tuln 查看TCP端…...
【学会动态规划】 最长递增子序列(26)
目录 动态规划怎么学? 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后: 动态规划怎么学? 学习一个算法没有捷径,更何况是学习动态规划, 跟我…...
Azure虚拟网络对等互连
什么是Azure虚拟网络对等互联 Azure虚拟网络对等互联(Azure Virtual Network peering)是一种连接两个虚拟网络的方法,使得这两个虚拟网络能够在同一地理区域内进行通信。它通过私有IP地址在虚拟网络之间建立网络连接,不论是在同一…...
CTFhub-sql-整数注入
判断存在 sqli 注入 1 1 and 11 1 and 12 因为 11 为真,12 为假,且 11 与 1 显示的数据一样,那么就存在 sqli 注入 查询该数据表的字段数量 一、 2 3 1,2成功带出数据,3没有数据,所以有两个字段 二、 1 order by …...
管理类联考——逻辑——真题篇——按知识分类——汇总篇——二、论证逻辑——归纳——第三节 归纳论证有效性
文章目录 第三节 归纳论证有效性真题(2007-37)——归纳——归纳论证有效性——两面验证法真题(2000-60)——归纳——归纳论证有效性——构造对照组实验真题(2001-44)——归纳——归纳论证有效性——寻找针对该缺陷的选项第三节 归纳论证有效性 真题(2007-37)——归纳—…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
