opencv-gpu版本编译(添加java支持,可选)实现硬解码
目录
- opencv gpu版本编译,实现硬解码,加速rtsp视频流读取
- 1、准备文件
- 2、复制 NVCUVID 头文件到 cuda 安装目录 include
- 3、安装相关依赖
- 4、 执行cmake
- 5、编译安装
- 6、测试
opencv gpu版本编译,实现硬解码,加速rtsp视频流读取
前置条件,显卡驱动,cuda 已安装
这里cuda安装路径为 /usr/local/cuda-11.2
1、准备文件
-
opencv-4.5.5 -
opencv_contrib-4.5.5

-
nucuvid:官网下载

2、复制 NVCUVID 头文件到 cuda 安装目录 include
sudo cp cuviddec.h nvcuid.h nvEncodeAPI. /usr/local/cuda-11.2/include
3、安装相关依赖
- 执行
01_install_dependence.sh
#!/bin/bashsudo apt update
sudo apt upgrade#sudo apt install -y gcc-10 g++-10
sudo apt install -y build-essential cmake pkg-config yasm git checkinstall
sudo apt install -y pkg-config yasm checkinstall
sudo apt install -y libjpeg-dev libpng-dev libtiff-dev
sudo apt install -y libavcodec-dev libavformat-dev libswscale-dev
sudo apt install -y libxvidcore-dev x264 libx264-dev libfaac-dev libmp3lame-dev libtheora-dev
sudo apt install -y libfaac-dev libmp3lame-dev libvorbis-dev
sudo apt install -y libgtkglext1 libgtkglext1-dev
sudo apt-get install -y libavresample-dev libdc1394-22 libdc1394-22-dev libxine2-dev libv4l-dev v4l-utils
4、 执行cmake
- 执行
02_install_opencv.sh
cd opencv_build
#unzip opencv.zip
#unzip opencv_contrib.zipecho "Moving onto the build portion of things"
cd opencv-4.5.5
mkdir build && cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE \-D CMAKE_C_COMPILER=/usr/bin/gcc-9 \-D CMAKE_INSTALL_PREFIX=../install_dir \-D OPENCV_GENERATE_PKGCONFIG=ON \-D BUILD_opencv_python3=ON \-D CUDA_ARCH_BIN=8.6\-D WITH_CUDA=ON \-D WITH_CUDNN=ON \-D OPENCV_DNN_CUDA=ON \-D ENABLE_FAST_MATH=1 \-D CUDA_FAST_MATH=1 \-D OPENCV_ENABLE_NONFREE=ON \-D WTIH_CUBLAS=1 \-D WITH_V4L=ON \-D WITH_NVCUVID=ON \-D WITH_OPENGL=ON \-D WITH_FFMPEG=ON \-D BUILD_opencv_java=ON \-D OPENCV_EXTRA_MODULES_PATH=~/opencv_project/opencv_build/opencv_contrib-4.5.5/modules ..echo "Configuring build & making OpenCV"
echo 'finished all the shit'
需要注意的地方:
-
-D CMAKE_INSTALL_PREFIX=../install_dir:安装路径 -
-D CUDA_ARCH_BIN=8.6: 显卡算力 -
-D WITH_CUDA=ON:启用CUDA支持 -
-D WITH_CUDNN=ON:启用CUDNN支持 -
-D OPENCV_DNN_CUDA=ON:启用CUDA加速的深度学习模块 -
-D WITH_NVCUVID=ON:启用NVCUVID支持,允许OpenCV在NVIDIA GPU上解码视频。 -
-D BUILD_opencv_java=ON: 启用 java 支持,需要先配置好java环境变量(jdk,ant),可选项
cmake 执行完成
--
-- OpenCV modules:
-- To be built: alphamat aruco barcode bgsegm bioinspired calib3d ccalib core cudaarithm cudabgsegm cudacodec cudafeatures2d cudafilters cudaimgproc cudalegacy cudaobjdetect cudaoptflow cudastereo cudawarping cudev datasets dnn dnn_objdetect dnn_superres dpm face features2d flann freetype fuzzy gapi hfs highgui img_hash imgcodecs imgproc intensity_transform java line_descriptor mcc ml objdetect optflow phase_unwrapping photo plot quality rapid reg rgbd saliency shape stereo stitching structured_light superres surface_matching text tracking ts video videoio videostab wechat_qrcode xfeatures2d ximgproc xobjdetect xphoto
-- Disabled: world
-- Disabled by dependency: -
-- Unavailable: cvv hdf julia matlab ovis python2 python3 sfm viz
-- Applications: tests perf_tests apps
-- Documentation: NO
-- Non-free algorithms: YES
--
-- GUI: GTK2
-- GTK+: YES (ver 2.24.32)
-- GThread : YES (ver 2.64.6)
-- GtkGlExt: YES (ver 1.2.0)
-- OpenGL support: YES (/usr/lib/x86_64-linux-gnu/libGL.so /usr/lib/x86_64-linux-gnu/libGLU.so)
-- VTK support: NO
--
-- Media I/O:
-- ZLib: /usr/lib/x86_64-linux-gnu/libz.so (ver 1.2.11)
-- JPEG: /usr/lib/x86_64-linux-gnu/libjpeg.so (ver 80)
-- WEBP: build (ver encoder: 0x020f)
-- PNG: /usr/lib/x86_64-linux-gnu/libpng.so (ver 1.6.37)
-- TIFF: /usr/lib/x86_64-linux-gnu/libtiff.so (ver 42 / 4.1.0)
-- JPEG 2000: build (ver 2.4.0)
-- OpenEXR: /usr/lib/x86_64-linux-gnu/libImath.so /usr/lib/x86_64-linux-gnu/libIlmImf.so /usr/lib/x86_64-linux-gnu/libIex.so /usr/lib/x86_64-linux-gnu/libHalf.so /usr/lib/x86_64-linux-gnu/libIlmThread.so (ver 2_3)
-- HDR: YES
-- SUNRASTER: YES
-- PXM: YES
-- PFM: YES
--
-- Video I/O:
-- DC1394: YES (2.2.5)
-- FFMPEG: YES
-- avcodec: YES (58.54.100)
-- avformat: YES (58.29.100)
-- avutil: YES (56.31.100)
-- swscale: YES (5.5.100)
-- avresample: YES (4.0.0)
-- GStreamer: YES (1.16.3)
-- v4l/v4l2: YES (linux/videodev2.h)
--
-- Parallel framework: pthreads
--
-- Trace: YES (with Intel ITT)
--
-- Other third-party libraries:
-- Intel IPP: 2020.0.0 Gold [2020.0.0]
-- at: /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/build/3rdparty/ippicv/ippicv_lnx/icv
-- Intel IPP IW: sources (2020.0.0)
-- at: /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/build/3rdparty/ippicv/ippicv_lnx/iw
-- VA: NO
-- Lapack: NO
-- Eigen: YES (ver 3.3.9)
-- Custom HAL: NO
-- Protobuf: build (3.19.1)
--
-- NVIDIA CUDA: YES (ver 11.2, CUFFT CUBLAS NVCUVID FAST_MATH)
-- NVIDIA GPU arch: 86
-- NVIDIA PTX archs:
--
-- cuDNN: YES (ver 8.6.0)
--
-- OpenCL: YES (no extra features)
-- Include path: /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/3rdparty/include/opencl/1.2
-- Link libraries: Dynamic load
--
-- Python 3:
-- Interpreter: /usr/bin/python3 (ver 3.8.10)
-- Libraries: NO
-- numpy: NO (Python3 wrappers can not be generated)
-- install path: -
--
-- Python (for build): /usr/bin/python3
--
-- Java:
-- ant: /usr/local/apache-ant-1.10.13/bin/ant (ver 1.10.13)
-- JNI: /usr/lib/jvm/jdk1.8.0_361/include /usr/lib/jvm/jdk1.8.0_361/include/linux /usr/lib/jvm/jdk1.8.0_361/include
-- Java wrappers: YES
-- Java tests: YES
--
-- Install to: /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/install_dir
-- -----------------------------------------------------------------
--
-- Configuring done
-- Generating done
-- Build files have been written to: /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/build
Configuring build & making OpenCV
finished all the shit
- gpu 加速开启成功

- java 支持开启成功

5、编译安装
-
进入cmake创建的build目录
cd opencv_build/opencv-4.5.5/build#编译,根据电脑核心数选择合适线程 make -j30 -
安装
make install
6、测试
-
进入目录
opencv_gpu_test,编译执行程序,在CMakeLIsts.txt中修改opencv的安装路径cd build make ./opencv_test -
CMakeLIsts.txt
cmake_minimum_required(VERSION 3.0.2) project(opencv_test) SET(CMAKE_BUILD_TYPE "Release")# 安装路径 find_package(OpenCV 4.5.5 REQUIRED PATHS /home/lenovo/opencv_project/opencv_build/opencv-4.5.5/install_dir)include_directories(${OpenCV_INCLUDE_DIRS})add_executable(opencv_test test.cc ) #add_executable( opencv_test gpu_mat.cpp ) target_link_libraries( opencv_test${OpenCV_LIBRARIES}/usr/lib/x86_64-linux-gnu) -
test.cc
#include <iostream> #include <string> #include <vector> #include <algorithm> #include <numeric> #include "opencv2/opencv_modules.hpp" #include <opencv2/core/utility.hpp> #include <opencv2/core.hpp> #include <opencv2/core/opengl.hpp> #include <opencv2/cudacodec.hpp> #include <opencv2/highgui.hpp>int main(int argc, const char* argv[]) {//std::cout<<cv::getBuildInformation()<<std::endl;//将这个流改成你自己的const std::string fname = "rtsp://admin:abcd1234@192.168.1.110:554/smart264/ch1/main/av_stream";const std::string gfname = "rtsp://admin:abcd1234@192.168.1.110:554/Streaming/Channels/2";std::cout<<"Set device...."<<std::endl;int numDevice = cv::cuda::getCudaEnabledDeviceCount();std::cout<<"device count: "<<numDevice<<std::endl;int cudaDevice = 0;cv::cuda::setDevice(cudaDevice);//cv::cuda::setGlDevice(cudaDevice);//cv::cuda::setGlDevice(1);std::cout<<"read rtsp through cpu..."<<std::endl;cv::Mat frame;cv::VideoCapture reader(fname);cv::cuda::GpuMat d_frame;std::cout<<"read rtsp through cuda..."<<std::endl;cv::Ptr<cv::cudacodec::VideoReader> d_reader = cv::cudacodec::createVideoReader(fname);cv::TickMeter tm;std::vector<double> cpu_times;std::vector<double> gpu_times;std::cout<<"test"<<std::endl;for (int i = 0;i<500;i++){tm.reset(); tm.start();if (!reader.read(frame))break;tm.stop();cpu_times.push_back(tm.getTimeMilli());tm.reset(); tm.start();if (!d_reader->nextFrame(d_frame))break;tm.stop();gpu_times.push_back(tm.getTimeMilli());}if (!cpu_times.empty() || !gpu_times.empty()){std::cout << std::endl << "Results:" << std::endl;//std::sort(cpu_times.begin(), cpu_times.end());std::sort(gpu_times.begin(), gpu_times.end());//double cpu_avg = std::accumulate(cpu_times.begin(), cpu_times.end(), 0.0) / cpu_times.size();double gpu_avg = std::accumulate(gpu_times.begin(), gpu_times.end(), 0.0) / gpu_times.size();//std::cout << "CPU : Avg : " << cpu_avg << " ms FPS : " << 1000.0 / cpu_avg << std::endl;std::cout << "GPU : Avg : " << gpu_avg << " ms FPS : " << 1000.0 / gpu_avg << std::endl;}return 0; } // #endif -
结果如下安装成功

相关文章:
opencv-gpu版本编译(添加java支持,可选)实现硬解码
目录 opencv gpu版本编译,实现硬解码,加速rtsp视频流读取1、准备文件2、复制 NVCUVID 头文件到 cuda 安装目录 include3、安装相关依赖4、 执行cmake5、编译安装6、测试 opencv gpu版本编译,实现硬解码,加速rtsp视频流读取 前置条…...
数据分析问答总结
一、SQL窗口函数 1.是什么 OLAP(Online Anallytical Processing联机分析处理),对数据库数据进行实时分析处理。 2.基本语法: <窗口函数>OVER (PARTITION BY <用于分组的列名> ORDER BY <用于排序的…...
Python学习笔记_实战篇(二)_django多条件筛选搜索
多条件搜索在很多网站上都有用到,比如京东,淘宝,51cto,等等好多购物教育网站上都有,当然网上也有很多开源的比楼主写的好的多了去了,仅供参考,哈哈 先来一张效果图吧,不然幻想不出来…...
【生态经济学】利用R语言进行经济学研究技术——从数据的收集与清洗、综合建模评价、数据的分析与可视化、因果推断等方面入手
查看原文>>>如何快速掌握利用R语言进行经济学研究技术——从数据的收集与清洗、综合建模评价、数据的分析与可视化、因果推断等方面入手 近年来,人工智能领域已经取得突破性进展,对经济社会各个领域都产生了重大影响,结合了统计学、…...
xml中的vo是干什么用的
在Java中,VO(Value Object)是一种常见的设计模式,用于表示纯粹的数据对象。VO 通常用于在不同层或模块之间传递数据,并且它们的主要目的是封装和组织数据,而不包含业务逻辑。 VO 在Java中的具体作用有以下…...
现代企业数据泄露的原因分析与建议
近年来,随着信息技术的飞速发展,数据已经成为现代企业不可或缺的发展资源。然而,随之而来的数据泄露危机,给个人、企业甚至整个社会带来了巨大的风险与威胁。本文将综合探讨企业数据泄露的主要途径和原因,并提出防护建…...
飞天使-kubeadm安装一主一从集群
文章目录 安装前准备安装前准备配置yum源等安装前准备docker安装 安装kubeadm配置kubeadm验证集群 参考链接 安装前准备 cat >> /etc/hosts <<EOF 192.168.100.30 k8s-01 192.168.100.31 k8s-02 EOF hostnamectl set-hostname k8s-01 #所有机器按照要求修改 ho…...
string类写时拷贝
文章目录 1.string类拷贝构造函数的现代写法2.string类写时拷贝vs和g下string结构的不同vs下string的结构:g下string的结构 3.总结 1.string类拷贝构造函数的现代写法 string类拷贝构造函数的传统写法: string(const string& s){if (this ! &s)…...
QT VS编译环境无法打开包括文件type_traits
这问题,别人给的处理方法都是: 添加环境变量执行vsvars32.bat/vcvarsall.bat/vsdevcmd.bat重新安装QT项目:执行qmake。。。。 个人不推荐配置环境编译,除非你非常熟,因为配置环境变量需要你知道有哪些路径需要添加&a…...
深入浅出 TCP/IP 协议栈
TCP/IP 协议栈是一系列网络协议的总和,是构成网络通信的核心骨架,它定义了电子设备如何连入因特网,以及数据如何在它们之间进行传输。TCP/IP 协议采用4层结构,分别是应用层、传输层、网络层和链路层,每一层都呼叫它的下…...
Servlet+JDBC实战开发书店项目讲解第13讲:库存管理功能
ServletJDBC实战开发书店项目讲解第13讲:库存管理功能 在第13讲中,我们将讲解如何实现书店项目中的库存管理功能。该功能包括图书的添加、编辑、删除和查询等核心功能。下面是实现该功能的主要思路: 显示库存列表: 创建一个管理页…...
Shepherd: A Critic for Language Model Generation
本文是LLM系列的相关文章,针对《Shepherd: A Critic for Language Model Generation》的翻译。 Shepherd:语言模型生成的评价 摘要1 引言2 数据收集3 Shepherd模型4 评估反馈5 结果6 相关工作7 结论不足 摘要 随着大型语言模型的改进,人们对…...
【Python爬虫案例】爬取大麦网任意城市的近期演出!
老规矩,先上结果: 含10个字段: 页码,演出标题,链接地址,演出时间,演出城市,演出地点,售价,演出类别,演出子类别,售票状态。 代码演示…...
【框架】SpringBoot数组传参问题
方式一 前端以字符串形式传递idList,采用逗号拼接,后端直接使用list接收 // 前端代码 form: {otherParam: ,idList: [id1,id2].join(,) }//后端代码 // 在后端接收idList时,直接使用List<T> 就可以接收前端字符串(默认使用…...
四川天蝶电子商务:2023短视频运营分析
短视频运营分析是指通过对短视频平台上的各种数据进行收集、整理和分析,以寻找出视频内容、用户活跃度、用户行为等方面的规律和问题,从而为短视频平台的运营决策提供依据。下面将从几个方面具体介绍短视频运营分析的重要性和方法。 首先,短…...
Git(5)已有项目连接远端git仓库
文章目录 初始化git连接远程仓库拉下仓库代码添加代码到本地仓库删除idea配置的git本地缓存提交代码推上去 初始化git git init连接远程仓库 git remote add origin 你的仓库地址拉下仓库代码 git pull --rebase origin master添加代码到本地仓库 git add .删除idea配置的g…...
Datawhale Django 后端开发入门 Task05 DefaultRouter、自定义函数
一、DefaultRouter是Django REST framework中提供的一个路由器类,用于自动生成URL路由。路由器是将URL与视图函数或视图集关联起来的一种机制。Django REST framework的路由器通过简单的配置可以自动生成标准的URL路由,从而减少了手动编写URL路由的工作量…...
JVM的元空间了解吗?
笔者近期在面试的时候被问到了这个问题,元空间也是Java8当时的一大重大革新,之前暑期实习求职的时候有专门看过,但是近期秋招的时候JVM相关的内容确实有点生疏了,故在此进行回顾。 结构 首先,我们应了解JVM的堆结构&a…...
WPS中的表格错乱少行
用Office word编辑的文档里面包含表格是正常的,但用WPS打开里面的表格就是错乱的,比如表格位置不对,或者是表格的前几行无法显示、丢失了。 有一种可能的原因是: 表格属性里面的文字环绕选成了“环绕”而非“无”,改…...
Pytorch-day09-模型微调-checkpoint
模型微调(fine-tune)-迁移学习 torchvision微调timm微调半精度训练 起源: 1、随着深度学习的发展,模型的参数越来越大,许多开源模型都是在较大数据集上进行训练的,比如Imagenet-1k,Imagenet-11k等2、如果…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
