当前位置: 首页 > news >正文

opencv-gpu版本编译(添加java支持,可选)实现硬解码

目录

  • opencv gpu版本编译,实现硬解码,加速rtsp视频流读取
      • 1、准备文件
      • 2、复制 NVCUVID 头文件到 cuda 安装目录 include
      • 3、安装相关依赖
      • 4、 执行cmake
      • 5、编译安装
      • 6、测试

opencv gpu版本编译,实现硬解码,加速rtsp视频流读取

前置条件,显卡驱动,cuda 已安装

这里cuda安装路径为 /usr/local/cuda-11.2

1、准备文件

  • opencv-4.5.5

  • opencv_contrib-4.5.5
    在这里插入图片描述

  • nucuvid:官网下载
    在这里插入图片描述

2、复制 NVCUVID 头文件到 cuda 安装目录 include

sudo cp cuviddec.h nvcuid.h nvEncodeAPI. /usr/local/cuda-11.2/include

3、安装相关依赖

  • 执行01_install_dependence.sh
#!/bin/bashsudo apt update
sudo apt upgrade#sudo apt install -y gcc-10 g++-10
sudo apt install -y build-essential cmake pkg-config yasm git checkinstall
sudo apt install -y pkg-config yasm checkinstall
sudo apt install -y libjpeg-dev libpng-dev libtiff-dev
sudo apt install -y libavcodec-dev libavformat-dev libswscale-dev 
sudo apt install -y libxvidcore-dev x264 libx264-dev libfaac-dev libmp3lame-dev libtheora-dev 
sudo apt install -y libfaac-dev libmp3lame-dev libvorbis-dev
sudo apt install -y libgtkglext1 libgtkglext1-dev
sudo apt-get install -y libavresample-dev libdc1394-22 libdc1394-22-dev libxine2-dev libv4l-dev v4l-utils

4、 执行cmake

  • 执行02_install_opencv.sh
cd opencv_build
#unzip opencv.zip
#unzip opencv_contrib.zipecho "Moving onto the build portion of things"
cd opencv-4.5.5
mkdir build && cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE \-D CMAKE_C_COMPILER=/usr/bin/gcc-9 \-D CMAKE_INSTALL_PREFIX=../install_dir \-D OPENCV_GENERATE_PKGCONFIG=ON \-D BUILD_opencv_python3=ON \-D CUDA_ARCH_BIN=8.6\-D WITH_CUDA=ON \-D WITH_CUDNN=ON \-D OPENCV_DNN_CUDA=ON \-D ENABLE_FAST_MATH=1 \-D CUDA_FAST_MATH=1 \-D OPENCV_ENABLE_NONFREE=ON \-D WTIH_CUBLAS=1 \-D WITH_V4L=ON \-D WITH_NVCUVID=ON \-D WITH_OPENGL=ON \-D WITH_FFMPEG=ON \-D BUILD_opencv_java=ON \-D OPENCV_EXTRA_MODULES_PATH=~/opencv_project/opencv_build/opencv_contrib-4.5.5/modules ..echo "Configuring build & making OpenCV"
echo 'finished all the shit'

需要注意的地方

  • -D CMAKE_INSTALL_PREFIX=../install_dir:安装路径

  • -D CUDA_ARCH_BIN=8.6 : 显卡算力

  • -D WITH_CUDA=ON:启用CUDA支持

  • -D WITH_CUDNN=ON:启用CUDNN支持

  • -D OPENCV_DNN_CUDA=ON:启用CUDA加速的深度学习模块

  • -D WITH_NVCUVID=ON:启用NVCUVID支持,允许OpenCV在NVIDIA GPU上解码视频。

  • -D BUILD_opencv_java=ON : 启用 java 支持,需要先配置好java环境变量(jdk,ant),可选项

cmake 执行完成

-- 
--   OpenCV modules:
--     To be built:                 alphamat aruco barcode bgsegm bioinspired calib3d ccalib core cudaarithm cudabgsegm cudacodec cudafeatures2d cudafilters cudaimgproc cudalegacy cudaobjdetect cudaoptflow cudastereo cudawarping cudev datasets dnn dnn_objdetect dnn_superres dpm face features2d flann freetype fuzzy gapi hfs highgui img_hash imgcodecs imgproc intensity_transform java line_descriptor mcc ml objdetect optflow phase_unwrapping photo plot quality rapid reg rgbd saliency shape stereo stitching structured_light superres surface_matching text tracking ts video videoio videostab wechat_qrcode xfeatures2d ximgproc xobjdetect xphoto
--     Disabled:                    world
--     Disabled by dependency:      -
--     Unavailable:                 cvv hdf julia matlab ovis python2 python3 sfm viz
--     Applications:                tests perf_tests apps
--     Documentation:               NO
--     Non-free algorithms:         YES
-- 
--   GUI:                           GTK2
--     GTK+:                        YES (ver 2.24.32)
--       GThread :                  YES (ver 2.64.6)
--       GtkGlExt:                  YES (ver 1.2.0)
--     OpenGL support:              YES (/usr/lib/x86_64-linux-gnu/libGL.so /usr/lib/x86_64-linux-gnu/libGLU.so)
--     VTK support:                 NO
-- 
--   Media I/O: 
--     ZLib:                        /usr/lib/x86_64-linux-gnu/libz.so (ver 1.2.11)
--     JPEG:                        /usr/lib/x86_64-linux-gnu/libjpeg.so (ver 80)
--     WEBP:                        build (ver encoder: 0x020f)
--     PNG:                         /usr/lib/x86_64-linux-gnu/libpng.so (ver 1.6.37)
--     TIFF:                        /usr/lib/x86_64-linux-gnu/libtiff.so (ver 42 / 4.1.0)
--     JPEG 2000:                   build (ver 2.4.0)
--     OpenEXR:                     /usr/lib/x86_64-linux-gnu/libImath.so /usr/lib/x86_64-linux-gnu/libIlmImf.so /usr/lib/x86_64-linux-gnu/libIex.so /usr/lib/x86_64-linux-gnu/libHalf.so /usr/lib/x86_64-linux-gnu/libIlmThread.so (ver 2_3)
--     HDR:                         YES
--     SUNRASTER:                   YES
--     PXM:                         YES
--     PFM:                         YES
-- 
--   Video I/O:
--     DC1394:                      YES (2.2.5)
--     FFMPEG:                      YES
--       avcodec:                   YES (58.54.100)
--       avformat:                  YES (58.29.100)
--       avutil:                    YES (56.31.100)
--       swscale:                   YES (5.5.100)
--       avresample:                YES (4.0.0)
--     GStreamer:                   YES (1.16.3)
--     v4l/v4l2:                    YES (linux/videodev2.h)
-- 
--   Parallel framework:            pthreads
-- 
--   Trace:                         YES (with Intel ITT)
-- 
--   Other third-party libraries:
--     Intel IPP:                   2020.0.0 Gold [2020.0.0]
--            at:                   /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/build/3rdparty/ippicv/ippicv_lnx/icv
--     Intel IPP IW:                sources (2020.0.0)
--               at:                /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/build/3rdparty/ippicv/ippicv_lnx/iw
--     VA:                          NO
--     Lapack:                      NO
--     Eigen:                       YES (ver 3.3.9)
--     Custom HAL:                  NO
--     Protobuf:                    build (3.19.1)
-- 
--   NVIDIA CUDA:                   YES (ver 11.2, CUFFT CUBLAS NVCUVID FAST_MATH)
--     NVIDIA GPU arch:             86
--     NVIDIA PTX archs:
-- 
--   cuDNN:                         YES (ver 8.6.0)
-- 
--   OpenCL:                        YES (no extra features)
--     Include path:                /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/3rdparty/include/opencl/1.2
--     Link libraries:              Dynamic load
-- 
--   Python 3:
--     Interpreter:                 /usr/bin/python3 (ver 3.8.10)
--     Libraries:                   NO
--     numpy:                       NO (Python3 wrappers can not be generated)
--     install path:                -
-- 
--   Python (for build):            /usr/bin/python3
-- 
--   Java:                          
--     ant:                         /usr/local/apache-ant-1.10.13/bin/ant (ver 1.10.13)
--     JNI:                         /usr/lib/jvm/jdk1.8.0_361/include /usr/lib/jvm/jdk1.8.0_361/include/linux /usr/lib/jvm/jdk1.8.0_361/include
--     Java wrappers:               YES
--     Java tests:                  YES
-- 
--   Install to:                    /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/install_dir
-- -----------------------------------------------------------------
-- 
-- Configuring done
-- Generating done
-- Build files have been written to: /home/dell/ljn/opencv_project/opencv_build/opencv-4.5.5/build
Configuring build & making OpenCV
finished all the shit
  • gpu 加速开启成功
    在这里插入图片描述
  • java 支持开启成功
    在这里插入图片描述

5、编译安装

  • 进入cmake创建的build目录

    cd opencv_build/opencv-4.5.5/build#编译,根据电脑核心数选择合适线程
    make -j30  
    
  • 安装

    make install
    

6、测试

  • 进入目录opencv_gpu_test,编译执行程序,在CMakeLIsts.txt中修改opencv的安装路径

    cd build
    make 
    ./opencv_test
    
  • CMakeLIsts.txt

    cmake_minimum_required(VERSION 3.0.2)
    project(opencv_test)
    SET(CMAKE_BUILD_TYPE "Release")# 安装路径
    find_package(OpenCV 4.5.5 REQUIRED PATHS /home/lenovo/opencv_project/opencv_build/opencv-4.5.5/install_dir)include_directories(${OpenCV_INCLUDE_DIRS})add_executable(opencv_test test.cc )
    #add_executable( opencv_test gpu_mat.cpp )
    target_link_libraries( opencv_test${OpenCV_LIBRARIES}/usr/lib/x86_64-linux-gnu)
    
  • test.cc

    #include <iostream>
    #include <string>
    #include <vector>
    #include <algorithm>
    #include <numeric>
    #include "opencv2/opencv_modules.hpp"
    #include <opencv2/core/utility.hpp>
    #include <opencv2/core.hpp>
    #include <opencv2/core/opengl.hpp>
    #include <opencv2/cudacodec.hpp>
    #include <opencv2/highgui.hpp>int main(int argc, const char* argv[])
    {//std::cout<<cv::getBuildInformation()<<std::endl;//将这个流改成你自己的const std::string fname = "rtsp://admin:abcd1234@192.168.1.110:554/smart264/ch1/main/av_stream";const std::string gfname = "rtsp://admin:abcd1234@192.168.1.110:554/Streaming/Channels/2";std::cout<<"Set device...."<<std::endl;int numDevice = cv::cuda::getCudaEnabledDeviceCount();std::cout<<"device count: "<<numDevice<<std::endl;int cudaDevice = 0;cv::cuda::setDevice(cudaDevice);//cv::cuda::setGlDevice(cudaDevice);//cv::cuda::setGlDevice(1);std::cout<<"read rtsp through cpu..."<<std::endl;cv::Mat frame;cv::VideoCapture reader(fname);cv::cuda::GpuMat d_frame;std::cout<<"read rtsp through cuda..."<<std::endl;cv::Ptr<cv::cudacodec::VideoReader> d_reader = cv::cudacodec::createVideoReader(fname);cv::TickMeter tm;std::vector<double> cpu_times;std::vector<double> gpu_times;std::cout<<"test"<<std::endl;for (int i = 0;i<500;i++){tm.reset(); tm.start();if (!reader.read(frame))break;tm.stop();cpu_times.push_back(tm.getTimeMilli());tm.reset(); tm.start();if (!d_reader->nextFrame(d_frame))break;tm.stop();gpu_times.push_back(tm.getTimeMilli());}if (!cpu_times.empty() || !gpu_times.empty()){std::cout << std::endl << "Results:" << std::endl;//std::sort(cpu_times.begin(), cpu_times.end());std::sort(gpu_times.begin(), gpu_times.end());//double cpu_avg = std::accumulate(cpu_times.begin(), cpu_times.end(), 0.0) / cpu_times.size();double gpu_avg = std::accumulate(gpu_times.begin(), gpu_times.end(), 0.0) / gpu_times.size();//std::cout << "CPU : Avg : " << cpu_avg << " ms FPS : " << 1000.0 / cpu_avg << std::endl;std::cout << "GPU : Avg : " << gpu_avg << " ms FPS : " << 1000.0 / gpu_avg << std::endl;}return 0;
    }
    // #endif
    
  • 结果如下安装成功

在这里插入图片描述

相关文章:

opencv-gpu版本编译(添加java支持,可选)实现硬解码

目录 opencv gpu版本编译&#xff0c;实现硬解码&#xff0c;加速rtsp视频流读取1、准备文件2、复制 NVCUVID 头文件到 cuda 安装目录 include3、安装相关依赖4、 执行cmake5、编译安装6、测试 opencv gpu版本编译&#xff0c;实现硬解码&#xff0c;加速rtsp视频流读取 前置条…...

数据分析问答总结

一、SQL窗口函数 1.是什么 OLAP&#xff08;Online Anallytical Processing联机分析处理&#xff09;&#xff0c;对数据库数据进行实时分析处理。 2.基本语法&#xff1a; <窗口函数>OVER &#xff08;PARTITION BY <用于分组的列名> ORDER BY <用于排序的…...

Python学习笔记_实战篇(二)_django多条件筛选搜索

多条件搜索在很多网站上都有用到&#xff0c;比如京东&#xff0c;淘宝&#xff0c;51cto&#xff0c;等等好多购物教育网站上都有&#xff0c;当然网上也有很多开源的比楼主写的好的多了去了&#xff0c;仅供参考&#xff0c;哈哈 先来一张效果图吧&#xff0c;不然幻想不出来…...

【生态经济学】利用R语言进行经济学研究技术——从数据的收集与清洗、综合建模评价、数据的分析与可视化、因果推断等方面入手

查看原文>>>如何快速掌握利用R语言进行经济学研究技术——从数据的收集与清洗、综合建模评价、数据的分析与可视化、因果推断等方面入手 近年来&#xff0c;人工智能领域已经取得突破性进展&#xff0c;对经济社会各个领域都产生了重大影响&#xff0c;结合了统计学、…...

xml中的vo是干什么用的

在Java中&#xff0c;VO&#xff08;Value Object&#xff09;是一种常见的设计模式&#xff0c;用于表示纯粹的数据对象。VO 通常用于在不同层或模块之间传递数据&#xff0c;并且它们的主要目的是封装和组织数据&#xff0c;而不包含业务逻辑。 VO 在Java中的具体作用有以下…...

现代企业数据泄露的原因分析与建议

近年来&#xff0c;随着信息技术的飞速发展&#xff0c;数据已经成为现代企业不可或缺的发展资源。然而&#xff0c;随之而来的数据泄露危机&#xff0c;给个人、企业甚至整个社会带来了巨大的风险与威胁。本文将综合探讨企业数据泄露的主要途径和原因&#xff0c;并提出防护建…...

飞天使-kubeadm安装一主一从集群

文章目录 安装前准备安装前准备配置yum源等安装前准备docker安装 安装kubeadm配置kubeadm验证集群 参考链接 安装前准备 cat >> /etc/hosts <<EOF 192.168.100.30 k8s-01 192.168.100.31 k8s-02 EOF hostnamectl set-hostname k8s-01 #所有机器按照要求修改 ho…...

string类写时拷贝

文章目录 1.string类拷贝构造函数的现代写法2.string类写时拷贝vs和g下string结构的不同vs下string的结构&#xff1a;g下string的结构 3.总结 1.string类拷贝构造函数的现代写法 string类拷贝构造函数的传统写法&#xff1a; string(const string& s){if (this ! &s)…...

QT VS编译环境无法打开包括文件type_traits

这问题&#xff0c;别人给的处理方法都是&#xff1a; 添加环境变量执行vsvars32.bat/vcvarsall.bat/vsdevcmd.bat重新安装QT项目&#xff1a;执行qmake。。。。 个人不推荐配置环境编译&#xff0c;除非你非常熟&#xff0c;因为配置环境变量需要你知道有哪些路径需要添加&a…...

深入浅出 TCP/IP 协议栈

TCP/IP 协议栈是一系列网络协议的总和&#xff0c;是构成网络通信的核心骨架&#xff0c;它定义了电子设备如何连入因特网&#xff0c;以及数据如何在它们之间进行传输。TCP/IP 协议采用4层结构&#xff0c;分别是应用层、传输层、网络层和链路层&#xff0c;每一层都呼叫它的下…...

Servlet+JDBC实战开发书店项目讲解第13讲:库存管理功能

ServletJDBC实战开发书店项目讲解第13讲&#xff1a;库存管理功能 在第13讲中&#xff0c;我们将讲解如何实现书店项目中的库存管理功能。该功能包括图书的添加、编辑、删除和查询等核心功能。下面是实现该功能的主要思路&#xff1a; 显示库存列表&#xff1a; 创建一个管理页…...

Shepherd: A Critic for Language Model Generation

本文是LLM系列的相关文章&#xff0c;针对《Shepherd: A Critic for Language Model Generation》的翻译。 Shepherd&#xff1a;语言模型生成的评价 摘要1 引言2 数据收集3 Shepherd模型4 评估反馈5 结果6 相关工作7 结论不足 摘要 随着大型语言模型的改进&#xff0c;人们对…...

【Python爬虫案例】爬取大麦网任意城市的近期演出!

老规矩&#xff0c;先上结果&#xff1a; 含10个字段&#xff1a; 页码&#xff0c;演出标题&#xff0c;链接地址&#xff0c;演出时间&#xff0c;演出城市&#xff0c;演出地点&#xff0c;售价&#xff0c;演出类别&#xff0c;演出子类别&#xff0c;售票状态。 代码演示…...

【框架】SpringBoot数组传参问题

方式一 前端以字符串形式传递idList&#xff0c;采用逗号拼接&#xff0c;后端直接使用list接收 // 前端代码 form: {otherParam: ,idList: [id1,id2].join(,) }//后端代码 // 在后端接收idList时&#xff0c;直接使用List<T> 就可以接收前端字符串&#xff08;默认使用…...

四川天蝶电子商务:2023短视频运营分析

短视频运营分析是指通过对短视频平台上的各种数据进行收集、整理和分析&#xff0c;以寻找出视频内容、用户活跃度、用户行为等方面的规律和问题&#xff0c;从而为短视频平台的运营决策提供依据。下面将从几个方面具体介绍短视频运营分析的重要性和方法。 首先&#xff0c;短…...

Git(5)已有项目连接远端git仓库

文章目录 初始化git连接远程仓库拉下仓库代码添加代码到本地仓库删除idea配置的git本地缓存提交代码推上去 初始化git git init连接远程仓库 git remote add origin 你的仓库地址拉下仓库代码 git pull --rebase origin master添加代码到本地仓库 git add .删除idea配置的g…...

Datawhale Django 后端开发入门 Task05 DefaultRouter、自定义函数

一、DefaultRouter是Django REST framework中提供的一个路由器类&#xff0c;用于自动生成URL路由。路由器是将URL与视图函数或视图集关联起来的一种机制。Django REST framework的路由器通过简单的配置可以自动生成标准的URL路由&#xff0c;从而减少了手动编写URL路由的工作量…...

JVM的元空间了解吗?

笔者近期在面试的时候被问到了这个问题&#xff0c;元空间也是Java8当时的一大重大革新&#xff0c;之前暑期实习求职的时候有专门看过&#xff0c;但是近期秋招的时候JVM相关的内容确实有点生疏了&#xff0c;故在此进行回顾。 结构 首先&#xff0c;我们应了解JVM的堆结构&a…...

WPS中的表格错乱少行

用Office word编辑的文档里面包含表格是正常的&#xff0c;但用WPS打开里面的表格就是错乱的&#xff0c;比如表格位置不对&#xff0c;或者是表格的前几行无法显示、丢失了。 有一种可能的原因是&#xff1a; 表格属性里面的文字环绕选成了“环绕”而非“无”&#xff0c;改…...

Pytorch-day09-模型微调-checkpoint

模型微调&#xff08;fine-tune)-迁移学习 torchvision微调timm微调半精度训练 起源&#xff1a; 1、随着深度学习的发展&#xff0c;模型的参数越来越大&#xff0c;许多开源模型都是在较大数据集上进行训练的&#xff0c;比如Imagenet-1k&#xff0c;Imagenet-11k等2、如果…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...