回归预测 | MATLAB实现GWO-BP灰狼算法优化BP神经网络多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现GWO-BP灰狼算法优化BP神经网络多输入单输出回归预测(多指标,多图)
目录
- 回归预测 | MATLAB实现GWO-BP灰狼算法优化BP神经网络多输入单输出回归预测(多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览



基本介绍
回归预测 | MATLAB实现GWO-BP灰狼算法优化BP神经网络多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现GWO-BP灰狼算法优化BP神经网络多输入单输出回归预测(多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:
回归预测 | MATLAB实现GWO-BP灰狼算法优化BP神经网络多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现GWO-BP灰狼算法优化BP神经网络多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现GWO-BP灰狼算法优化BP神经网络多输入单输出回归预测(多指标,多图)效果一览基本介绍程序…...
docker 06(docker compose)
一、服务编排 二、docker compose...
非阻塞重试与 Spring Kafka 的集成测试
如何为启用重试和死信发布的消费者的 Spring Kafka 实现编写集成测试。 Kafka 非阻塞重试 Kafka 中的非阻塞重试是通过为主主题配置重试主题来完成的。如果需要,还可以配置其他死信主题。如果所有重试均已用尽,事件将转发至 DLT。公共领域提供了大量资…...
基于 Debian 12 的MX Linux 23 正式发布!
导读MX Linux 是基于 Debian 稳定分支的面向桌面的 Linux 发行,它是 antiX 及早先的 MEPIS Linux 社区合作的产物。它采用 Xfce 作为默认桌面环境,是一份中量级操作系统,并被设计为优雅而高效的桌面与如下特性的结合:配置简单、高…...
Nginx代理功能与负载均衡详解
序言 Nginx的代理功能与负载均衡功能是最常被用到的,关于nginx的基本语法常识与配置已在上篇文章中有说明,这篇就开门见山,先描述一些关于代理功能的配置,再说明负载均衡详细。 Nginx代理服务的配置说明 1、上一篇中我们在http…...
部署问题集合(特辑)虚拟机常用命令
基础 查看ip:ip addr或ipconfig压缩:tar -zcvf redis-3.2.8.tar.gz redis-3.2.8/ 注意:-zcvf对应gz,-vcf对应tar 解压:tar -zxvf redis-3.2.8.tar.gz压缩zip:zip nginx.zip nginx.txt nginx2.txt解压zip&a…...
【Git】如何将本地文件进行Git仓库归档
Git 全局设置 git config --global user.name "mcihael" git config --global user.email "michael520.com"创建新版本库 git clone gitcode.xxxxxx.git cd branch-name touch README.md git add README.md git commit -m "add README" git pu…...
uniapp 使用腾讯视频 的 坑
1. 版本号的问题 注意 1.X.X不维护了 , 需要升级要 2.X.X 2. 官网的 组件事件 调用需要去掉bind 才能调用 官网地址:腾讯视频 | 小程序插件 | 微信公众平台...
LinkedList
LinkedList的模拟实现(底层是一个双向链表)LinkedList使用 LinkedList的模拟实现(底层是一个双向链表) 无头双向链表:有两个指针;一个指向前一个节点的地址;一个指向后一个节点的地址。 节点定…...
创作新纪元:知乎、阅文加码AI大模型,撬动创作者经济
输入几个关键词就能生成一篇文章、一篇新闻、一篇小说,ChatGPT自诞生以来文本生成能力一直备受赞誉,ChatGPT要替代记者、编辑、作家的言论愈演愈烈,甚至有一些互联网企业宣布砍掉记者、编辑、文案等岗位全面拥抱AIGC。 目前ChatGPT是否会全面…...
PAT(Advanced Level) Practice(with python)——1067 Sort with Swap(0, i)
Code # 输入有毒,需避坑 # N int(input()) L list(map(int,input().split())) N L[0] L L[1:] res 0 for i in range(1,N):while L[0]!0:# 把所有不在正常位置下的数换到正常t L[0]L[0],L[t] L[t],L[0]res1if L[i]!i:# 换完全后如果对应位置下的数不是目标…...
Python爬取斗罗大陆全集
打开网址http://www.luoxu.cc/dmplay/C888H-1-265.html F12打开Fetch/XHR,看到m3u8,ts,一眼顶真,打开index.m3u8 由第一个包含第二个index.m3u8的地址,ctrlf在源代码中一查index,果然有,不过/…...
前馈神经网络解密:深入理解人工智能的基石
目录 一、前馈神经网络概述什么是前馈神经网络前馈神经网络的工作原理应用场景及优缺点 二、前馈神经网络的基本结构输入层、隐藏层和输出层激活函数的选择与作用网络权重和偏置 三、前馈神经网络的训练方法损失函数与优化算法反向传播算法详解避免过拟合的策略 四、使用Python…...
顺序栈Sequential-stack
0、节点结构体定义 typedef struct SqStack{int *base;int *top; } SqStack; 1、初始化 bool InitStack(SqStack &S) {S.base new int[Maxsize]; //eg. #define Maxsize 100if(!S.base){return false;}S.top S.base;return true; } 2、入栈 bool Push(SqStack &…...
关于工牌(必须5-10个字)
今天蹲坑,低头看了下工牌觉得挺有意思:我从啥时候起也不排斥将工牌挂在脖子上了? 工牌,一个标识。不仅标识了你,也标识了你所在的群体。如果你认可这个群体,佩戴它那是一种荣誉、荣耀;如果你不…...
PHP混淆加密以及常用的一些加密工具
PHP混淆加密是一种将源代码转换为难以理解和阅读的方式,以保护代码的安全性。以下是一些常见的PHP混淆加密方法: 代码压缩:使用代码压缩工具(如UglifyJS)将PHP代码压缩为一行,去除空格、换行符等可读性的字…...
无涯教程-PHP - ereg()函数
ereg() - 语法 int ereg(string pattern, string originalstring, [array regs]); ereg()函数在string指定的字符串中搜索pattern指定的字符串,如果找到pattern,则返回true,否则返回false。搜索对于字母字符区分大小写。 可选的输入参数re…...
【Ubuntu】简洁高效企业级日志平台后起之秀Graylog
简介 Graylog 是一个用于集中式日志管理的开源平台。在现代数据驱动的环境中,我们需要处理来自各种设备、应用程序和操作系统的大量数据。Graylog提供了一种方法来聚合、组织和理解所有这些数据。它的核心功能包括流式标记、实时搜索、仪表板可视化、告警触发、内容…...
TCP特点UDP编程
目录 1、tcp协议和udp协议 2、多线程并发和多进程并发: (1)多进程并发服务端 (2)多进程并发客户端: 3、tcp: 4、粘包 5、UDP协议编程流程 (1)服务器端: (2)客户端: 6、tcp状…...
超级计算机
超级计算机是一种高性能计算机,它能够以极高的速度执行大规模的计算任务。超级计算机通常由数千个甚至数百万个处理器组成,这些处理器能够同时处理大量的数据,从而实现高效的计算。超级计算机广泛应用于科学、工程、金融、天气预报等领域&…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
