当前位置: 首页 > news >正文

数学建模及数据分析 || 4. 深度学习应用案例分享

PyTorch 深度学习全连接网络分类

文章目录

  • PyTorch 深度学习全连接网络分类
    • 1. 非线性二分类
    • 2. 泰坦尼克号数据分类
      • 2.1 数据的准备工作
      • 2.2 全连接网络的搭建
      • 2.3 结果的可视化

1. 非线性二分类

import sklearn.datasets #数据集
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_scoreimport torch
import numpy as np
import matplotlib.pyplot as plt
import torch.nn as nnnp.random.seed(0) #设置随机数种子
X, Y = sklearn. datasets. make_moons (200, noise=0.2) # 生成内组半圆形数据arg = np.squeeze(np.argwhere(Y==0),axis = 1) # 获取第1类数据索引
arg2 = np.squeeze(np.argwhere (Y==1), axis = 1) # 获取第2类数据索引
plt.title("moons data") 
plt.scatter(X[arg,0], X[arg, 1], s=100, c='b' , marker='+' , label='data1')
plt.scatter(X[arg2,0], X[arg2, 1], s=40, c='r' ,marker='o' , label= 'data2')
plt.legend()
plt.show()

在这里插入图片描述

#继承nn.Module类,构建网络模型
class LogicNet(nn.Module):def __init__(self,inputdim,hiddendim,outputdim):#初始化网络结构super(LogicNet,self).__init__()self.Linear1 = nn.Linear(inputdim,hiddendim) #定义全连接层self.Linear2 = nn.Linear(hiddendim,outputdim)#定义全连接层self.criterion = nn.CrossEntropyLoss() #定义交叉熵函数def forward(self,x): #搭建用两层全连接组成的网络模型x = self.Linear1(x)#将输入数据传入第1层x = torch.tanh(x)#对第一层的结果进行非线性变换x = self.Linear2(x)#再将数据传入第2层
#        print("LogicNet")return xdef predict(self,x):#实现LogicNet类的预测接口#调用自身网络模型,并对结果进行softmax处理,分别得出预测数据属于每一类的概率pred = torch.softmax(self.forward(x),dim=1)return torch.argmax(pred,dim=1)  #返回每组预测概率中最大的索引def getloss(self,x,y): #实现LogicNet类的损失值计算接口y_pred = self.forward(x)loss = self.criterion(y_pred,y)#计算损失值得交叉熵return lossmodel = LogicNet(inputdim=2,hiddendim=3,outputdim=2)
optimizer = torch.optim.Adam(model.parameters(),lr=0.01)
def moving_average(a, w=10):#定义函数计算移动平均损失值if len(a) < w:return a[:]return [val if idx < w else sum(a[(idx-w):idx])/w for idx, val in enumerate(a)]def plot_losses(losses):avgloss= moving_average(losses) #获得损失值的移动平均值plt.figure(1)plt.subplot(211)plt.plot(range(len(avgloss)), avgloss, 'b--')plt.xlabel('step number')plt.ylabel('Training loss')plt.title('step number vs. Training loss')plt.show()
def predict(model,x):   #封装支持Numpy的预测接口x = torch.from_numpy(x).type(torch.FloatTensor)ans = model.predict(x)return ans.numpy()def plot_decision_boundary(pred_func,X,Y):#在直角坐标系中可视化模型能力#计算取值范围x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5h = 0.01#在坐标系中采用数据,生成网格矩阵,用于输入模型xx,yy=np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))#将数据输入并进行预测Z = pred_func(np.c_[xx.ravel(), yy.ravel()])Z = Z.reshape(xx.shape)#将预测的结果可视化plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)plt.title("Linear predict")arg = np.squeeze(np.argwhere(Y==0),axis = 1)arg2 = np.squeeze(np.argwhere(Y==1),axis = 1)plt.scatter(X[arg,0], X[arg,1], s=100,c='b',marker='+')plt.scatter(X[arg2,0], X[arg2,1],s=40, c='r',marker='o')plt.show()
if __name__ == '__main__':xt = torch.from_numpy(X).type(torch.FloatTensor)yt = torch.from_numpy(Y).type(torch.LongTensor)epochs = 1000losses = []for i in range(epochs):loss = model.getloss(xt,yt)losses.append(loss.item())optimizer.zero_grad()loss.backward()optimizer.step()plot_losses(losses)print(accuracy_score(model.predict(xt),yt))plot_decision_boundary(lambda x: predict(model,x), xt.numpy(), yt.numpy())

在这里插入图片描述

0.98

在这里插入图片描述

2. 泰坦尼克号数据分类

2.1 数据的准备工作

计算模块和数据的准备

import os
import numpy as np
import pandas as pd
from scipy import statsimport torch
import torch.nn as nn
import torch.nn.functional as Ftitanic_data = pd.read_csv("titanic3.csv")
print(titanic_data.columns )
print('\n',titanic_data.dtypes)

Index([‘pclass’, ‘survived’, ‘name’, ‘sex’, ‘age’, ‘sibsp’, ‘parch’, ‘ticket’,
‘fare’, ‘cabin’, ‘embarked’, ‘boat’, ‘body’, ‘home.dest’],
dtype=‘object’)
------------
pclass int64
survived int64
name object
sex object
age float64
sibsp int64
parch int64
ticket object
fare float64
cabin object
embarked object
boat object
body float64
home.dest object
dtype: object

对哑变量的处理

#用哑变量将指定字段转成one-hot
titanic_data = pd.concat([titanic_data,pd.get_dummies(titanic_data['sex']),pd.get_dummies(titanic_data['embarked'],prefix="embark"),pd.get_dummies(titanic_data['pclass'],prefix="class")], axis=1)print(titanic_data.columns )
print(titanic_data['sex'])
print(titanic_data['female'])

Index([‘pclass’, ‘survived’, ‘name’, ‘sex’, ‘age’, ‘sibsp’, ‘parch’, ‘ticket’,
‘fare’, ‘cabin’, ‘embarked’, ‘boat’, ‘body’, ‘home.dest’, ‘female’,
‘male’, ‘embark_C’, ‘embark_Q’, ‘embark_S’, ‘class_1’, ‘class_2’,
‘class_3’],
dtype=‘object’)
0 female
1 male
2 female
3 male
4 female

1304 female
1305 female
1306 male
1307 male
1308 male
Name: sex, Length: 1309, dtype: object
0 1
1 0
2 1
3 0
4 1

1304 1
1305 1
1306 0
1307 0
1308 0
Name: female, Length: 1309, dtype: uint8

对缺失值的处理

#处理None值
titanic_data["age"] = titanic_data["age"].fillna(titanic_data["age"].mean())
titanic_data["fare"] = titanic_data["fare"].fillna(titanic_data["fare"].mean())#乘客票价#删去无用的列
titanic_data = titanic_data.drop(['name','ticket','cabin','boat','body','home.dest','sex','embarked','pclass'], axis=1)
print(titanic_data.columns)

Index([‘survived’, ‘age’, ‘sibsp’, ‘parch’, ‘fare’, ‘female’, ‘male’,
‘embark_C’, ‘embark_Q’, ‘embark_S’, ‘class_1’, ‘class_2’, ‘class_3’],
dtype=‘object’)

划分训练集和测试集

#分离样本和标签
labels = titanic_data["survived"].to_numpy()titanic_data = titanic_data.drop(['survived'], axis=1)
data = titanic_data.to_numpy()#样本的属性名称
feature_names = list(titanic_data.columns)#将样本分为训练和测试两部分
np.random.seed(10)#设置种子,保证每次运行所分的样本一致
train_indices = np.random.choice(len(labels), int(0.7*len(labels)), replace=False)
test_indices = list(set(range(len(labels))) - set(train_indices))
train_features = data[train_indices]
train_labels = labels[train_indices]
test_features = data[test_indices]
test_labels = labels[test_indices]
len(test_labels)#393

2.2 全连接网络的搭建

搭建全连接网络

torch.manual_seed(0)  #设置随机种子class ThreelinearModel(nn.Module):def __init__(self):super().__init__()self.linear1 = nn.Linear(12, 12)self.mish1 = Mish()self.linear2 = nn.Linear(12, 8)self.mish2 = Mish()self.linear3 = nn.Linear(8, 2)self.softmax = nn.Softmax(dim=1)self.criterion = nn.CrossEntropyLoss() #定义交叉熵函数def forward(self, x): #定义一个全连接网络lin1_out = self.linear1(x)out1 = self.mish1(lin1_out)out2 = self.mish2(self.linear2(out1))return self.softmax(self.linear3(out2))def getloss(self,x,y): #实现LogicNet类的损失值计算接口y_pred = self.forward(x)loss = self.criterion(y_pred,y)#计算损失值得交叉熵return lossclass Mish(nn.Module):#Mish激活函数def __init__(self):super().__init__()print("Mish activation loaded...")def forward(self,x):x = x * (torch.tanh(F.softplus(x)))return xnet = ThreelinearModel()
optimizer = torch.optim.Adam(net.parameters(), lr=0.04)

训练网络

num_epochs = 200input_tensor = torch.from_numpy(train_features).type(torch.FloatTensor)
label_tensor = torch.from_numpy(train_labels)losses = []#定义列表,用于接收每一步的损失值
for epoch in range(num_epochs): loss = net.getloss(input_tensor,label_tensor)losses.append(loss.item())optimizer.zero_grad()#清空之前的梯度loss.backward()#反向传播损失值optimizer.step()#更新参数if epoch % 20 == 0:print ('Epoch {}/{} => Loss: {:.2f}'.format(epoch+1, num_epochs, loss.item()))#os.makedirs('models', exist_ok=True)
#torch.save(net.state_dict(), 'models/titanic_model.pt')  

Epoch 1/200 => Loss: 0.72
Epoch 21/200 => Loss: 0.55
Epoch 41/200 => Loss: 0.52
Epoch 61/200 => Loss: 0.49
Epoch 81/200 => Loss: 0.49
Epoch 101/200 => Loss: 0.48
Epoch 121/200 => Loss: 0.48
Epoch 141/200 => Loss: 0.48
Epoch 161/200 => Loss: 0.48
Epoch 181/200 => Loss: 0.48

2.3 结果的可视化

可视化函数

import matplotlib.pyplot as pltdef moving_average(a, w=10):#定义函数计算移动平均损失值if len(a) < w:return a[:]return [val if idx < w else sum(a[(idx-w):idx])/w for idx, val in enumerate(a)]def plot_losses(losses):avgloss= moving_average(losses) #获得损失值的移动平均值plt.figure(1)plt.subplot(211)plt.plot(range(len(avgloss)), avgloss, 'b--')plt.xlabel('step number')plt.ylabel('Training loss')plt.title('step number vs. Training loss')plt.show()

调用可视化函数作图

plot_losses(losses)#输出训练结果
out_probs = net(input_tensor).detach().numpy()
out_classes = np.argmax(out_probs, axis=1)
print("Train Accuracy:", sum(out_classes == train_labels) / len(train_labels))#测试模型
test_input_tensor = torch.from_numpy(test_features).type(torch.FloatTensor)
out_probs = net(test_input_tensor).detach().numpy()
out_classes = np.argmax(out_probs, axis=1)
print("Test Accuracy:", sum(out_classes == test_labels) / len(test_labels))

在这里插入图片描述

Train Accuracy: 0.8384279475982532
Test Accuracy: 0.806615776081425

相关文章:

数学建模及数据分析 || 4. 深度学习应用案例分享

PyTorch 深度学习全连接网络分类 文章目录 PyTorch 深度学习全连接网络分类1. 非线性二分类2. 泰坦尼克号数据分类2.1 数据的准备工作2.2 全连接网络的搭建2.3 结果的可视化 1. 非线性二分类 import sklearn.datasets #数据集 import numpy as np import matplotlib.pyplot as…...

数据分析15——office中的Excel基础技术汇总

0、前言&#xff1a; 这部分总结就是总结每个基础技术的定义&#xff0c;在了解基础技术名称和定义后&#xff0c;方便对相关技术进行检索学习。笔记不会详细到所有操作都说明&#xff0c;但会把基础操作的名称及作用说明&#xff0c;可自行检索。本文对于大部分读者有以下作用…...

C语言好题解析(四)

目录 选择题一选择题二选择题三选择题四选择题五编程题一 选择题一 已知函数的原型是&#xff1a; int fun(char b[10], int *a); 设定义&#xff1a; char c[10];int d; &#xff0c;正确的调用语句是&#xff08; &#xff09; A: fun(c,&d); B: fun(c,d); C: fun(&…...

英语——主谓一致

主谓一致是指句子的谓语动词与其主语在数上必须保持一致,一般遵循以下三个原则: 一、语法形式上一致,即单复数形式与谓语要一致。 二、意义上一致,即主语意义上的单复数要与谓语的单复数形式一致。 三、就近以及就远原则,即谓语动词的单复形式取决于最靠近它的词语或者离它…...

属性字符串解析

连续的KV的字符串&#xff0c;每个KV之间用","分隔&#xff0c;V中可嵌套KV的连续字符串结构&#xff0c;例如“ key1value1,key2value2,key3[key4value4,key5value5,key6[key7value7]],key8value8 请编写如下函数&#xff0c;给定字符串&#xff0c;输出嵌套结构的H…...

【C++初阶】vector容器

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前学习C和算法 ✈️专栏&#xff1a;C航路 &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章对你有帮助的话 欢迎 评论&#x1f4ac; 点赞&#x1…...

ThreadLocal深度解析

简介 在并发编程中&#xff0c;导致并发bug的问题都会归结于对共享变量的操作不当。多个线程同时读写同一共享变量存在并发问题&#xff0c;我们可以利用写时复制、不变性来突破对原数据的写操作&#xff0c;没有写就没有并发问题&#xff0c;而本篇文章所介绍的技术是突破共享…...

06有监督学习——迁移学习

1.迁移学习分类 &#xff08;1&#xff09; 基于实例的迁移学习方法&#xff1a; 假设:源域中的一些数据和目标域会共享很多共同的特征方法:对源域进行instance reweighting&#xff0c;筛选出与目标域数据相似度高的数据&#xff0c;然后进行训练学习 &#xff08;2&#x…...

快速连接服务器脚本 可从多个服务中选择并连接

使用 python 做一个可选择服务器登录连接的脚本 前置条件 需要有python 环境python --version 显示版本号即可检查 python 是否有 paramiko 包没有的话 python install paramiko创建一个python 文件,内容如下 # -*- coding: utf-8 -*-""" Authors: huxiaohua…...

MemSeg:一种差异和共性来检测图像表面缺陷的半监督方法

目录 1、摘要 2、Method 2.1 模拟异常样本 2.2 Memory Module 2.3 空间注意模块 2.4 多尺度特征融合模块 2.5 损失函数设置 2.6 Decoder模块 1、摘要 本文认为人为创建类内差异和保持类内共性可以帮助模型实现更好的缺陷检测能力&#xff0c;从而更好地区分非正常图像。如…...

迈向未来的大门:人脸识别技术的突破与应用

迈向未来的大门&#xff1a;人脸识别技术的突破与应用 人脸识别&#xff1a;人脸识别的工作流程人脸识别的作用人脸识别技术的突破与应用 在深度学习人脸识别之前我们要先知道人脸识别是什么。 人脸识别&#xff1a; 人脸识别是一种基于人脸图像或视频进行身份验证或识别的技术…...

Vue-9.集成(.editorconfig、.eslintrc.js、.prettierrc)

介绍 同时使用 .editorconfig、.prettierrc 和 .eslintrc.js 是很常见的做法&#xff0c;因为它们可以在不同层面上帮助确保代码的格式一致性和质量。这种组合可以在开发过程中提供全面的代码维护和质量保证。然而&#xff0c;这也可能增加一些复杂性&#xff0c;需要谨慎配置…...

Qt 编译使用Bit7z库接口调用7z.dll、7-Zip.dll解压压缩常用Zip、ISO9660、Wim、Esd、7z等格式文件(一)

bit7z一个c静态库&#xff0c;为7-zip共享库提供了一个干净简单的接口 使用CMAKE重新编译github上的bit7z库&#xff0c;用来解压/预览iso9660&#xff0c;WIm&#xff0c;Zip,Rar等常用的压缩文件格式。z-zip库支持大多数压缩文件格式 导读 编译bit7z(C版本)使用mscv 2017编译…...

AndroidUI体系

见&#xff1a;GitHub - eHackyd/Android_UI: Android UI体系的学习笔记...

CBV (基于类的视图)源码解析(1)

面向对象和反射的一些补充说明 class Animal:def __init__(self, name, age, func_str):self.name nameself.age age# self 指的是类实例对象&#xff0c;此处指的是 Dog 的实例对象# 所以如果 Dog 中重写了 sleep 方法&#xff0c;那么 self.sleep() 调用的就是 Dog 中的 s…...

2023-08-17 Untiy进阶 C#知识补充7——C#8主要功能与语法

文章目录 一、Using 声明二、静态本地函数三、Null 合并赋值四、解构函数 Deconstruct五、模式匹配增强功能 ​ 注意&#xff1a;在此仅提及 Unity 开发中会用到的一些功能和特性&#xff0c;对于不适合在 Unity 中使用的内容会忽略。 ​ C# 8 对应 Unity 版本&#xff1a; Un…...

登陆接口的的Filter过滤

目录 一、概述 二、基本操作 三、登陆检查接口 一、概述 什么是Filter&#xff1f; Filter表示过滤器&#xff0c;是 JavaWeb三大组件(Servlet、Filter、Listener)之一。 过滤器可以把对资源的请求拦截下来&#xff0c;从而实现一些特殊的功能 使用了过滤器之后&#xff0…...

【Python原创设计】基于Python Flask的全国气象数据采集及可视化系统-附下载方式以及项目参考论文,原创项目其他均为抄袭

基于Python Flask的全国气象数据采集及可视化系统 一、项目简介二、项目技术三、项目功能四、运行截图五、分类说明六、实现代码七、数据库结构八、源码下载 一、项目简介 本项目是一个基于Web技术的实时气象数据可视化系统。通过爬取中国天气网的各个城市气象数据&#xff0c…...

【力扣】42. 接雨水 <模拟、双指针、单调栈>

【力扣】42. 接雨水 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 目录 【力扣】42. 接雨水题解暴力双指针单调栈 示例 1&#xff1a; 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2,1] 输出&…...

【leetcode 力扣刷题】链表基础知识 基础操作

链表基础知识 基础操作 链表基础操作链表基础知识插入节点删除节点查找节点 707. 设计链表实现&#xff1a;单向链表&#xff1a;实现&#xff1a;双向链表 链表基础操作 链表基础知识 在数据结构的学习过程中&#xff0c;我们知道线性表【一种数据组织、在内存中存储的形式】…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...