【考研数学】线形代数第三章——向量 | 基本概念、向量组的相关性与线性表示
文章目录
- 引言
- 一、向量的概念与运算
- 1.1 基本概念
- 1.2 向量运算的性质
- 二、向量组的相关性与线性表示
- 2.1 理论背景
- 2.2 相关性与线性表示基本概念
- 2.3 向量组相关性与线性表示的性质
引言
向量是线性代数的重点和难点。向量是矩阵,同时矩阵又是由向量构成的,向量组与矩阵的关系非常紧密。
一、向量的概念与运算
1.1 基本概念
向量——既有大小(长度)又有方向的量称为向量, ( a 1 , a 2 , … , a n ) T , ( a 1 , a 2 , … , a n ) (a_1,a_2,\dots,a_n)^T,(a_1,a_2,\dots,a_n) (a1,a2,…,an)T,(a1,a2,…,an) 分别称为 n n n 维列向量和 n n n 维行向量,其中 a i a_i ai 称为向量的 n n n 个分量,一般情况下我们所指的向量为列向量。
向量的模——设向量 α = ( a 1 , a 2 , … , a n ) T \alpha=(a_1,a_2,\dots,a_n)^T α=(a1,a2,…,an)T ,称 a 1 2 + a 2 2 + ⋯ + a n 2 \sqrt{a_1^2+a_2^2+\dots+a_n^2} a12+a22+⋯+an2 为向量 α \alpha α 的模或长度,记为 ∣ α ∣ . |\alpha|. ∣α∣.
向量的单位化——设向量 α = ( a 1 , a 2 , … , a n ) T \alpha=(a_1,a_2,\dots,a_n)^T α=(a1,a2,…,an)T 为非零向量,与向量 α \alpha α 方向相同且长度为 1 的向量称为 α \alpha α 对应的单位向量,令 α 0 = 1 ∣ α ∣ α , \alpha^0=\frac{1}{|\alpha|}\alpha, α0=∣α∣1α, 则称 α 0 \alpha^0 α0 为向量 α \alpha α 的单位化向量。
向量的三则运算——加、减、与一个常数相乘。
向量的内积——设向量 α = ( a 1 , a 2 , … , a n ) T \alpha=(a_1,a_2,\dots,a_n)^T α=(a1,a2,…,an)T ,设向量 β = ( b 1 , b 2 , … , b n ) T \beta=(b_1,b_2,\dots,b_n)^T β=(b1,b2,…,bn)T ,称 a 1 b 1 + a 2 b 2 + ⋯ + a n b n a_1b_1+a_2b_2+\dots+a_nb_n a1b1+a2b2+⋯+anbn 为向量 α , β \alpha ,\beta α,β 的内积,记为 ( α , β ) . (\alpha,\beta). (α,β).
1.2 向量运算的性质
(一)三则运算的性质

(二)向量内积运算的性质
- ( α , β ) = ( β , α ) = α T β = β T α . (\alpha,\beta)=(\beta,\alpha)=\alpha^T\beta=\beta^T\alpha. (α,β)=(β,α)=αTβ=βTα.
- ( α , α ) = α T α = ∣ α ∣ 2 , (\alpha,\alpha)=\alpha^T\alpha=|\alpha|^2, (α,α)=αTα=∣α∣2, 且 ( α , α ) = 0 (\alpha,\alpha)=0 (α,α)=0 的充要条件为 α = 0. \alpha=0. α=0.
- ( a , k 1 β 1 + k 2 β 2 + ⋯ + k n β n ) = k 1 ( α , β 1 ) + k 2 ( α 2 , β 2 ) + ⋯ + k n ( α , β n ) . (a,k_1\beta_1+k_2\beta_2+\dots+k_n\beta_n)=k_1(\alpha,\beta_1)+k_2(\alpha_2,\beta_2)+\dots+k_n(\alpha,\beta_n). (a,k1β1+k2β2+⋯+knβn)=k1(α,β1)+k2(α2,β2)+⋯+kn(α,βn).
- 若 ( α , β ) = 0 (\alpha,\beta)=0 (α,β)=0 ,即 a 1 b 1 + a 2 b 2 + ⋯ + a n b n = 0 a_1b_1+a_2b_2+\dots+a_nb_n=0 a1b1+a2b2+⋯+anbn=0 ,称 α , β \alpha,\beta α,β 正交,记为 α ⊥ β \alpha \bot \beta α⊥β ,特别地,零向量与任何向量正交。
二、向量组的相关性与线性表示
2.1 理论背景
对于齐次线性方程组:

以及非齐次线性方程组:

令 α 1 = ( a 11 , a 21 , … , a m 1 ) T , α 2 = ( a 12 , a 22 , … , a m 2 ) T , … , α n = ( a 1 n , a 2 n , … , a m n ) T , b = ( b 1 , b 2 , … , b m ) T \alpha_1=(a_{11},a_{21},\dots,a_{m1})^T,\alpha_2=(a_{12},a_{22},\dots,a_{m2})^T,\dots,\alpha_n=(a_{1n},a_{2n},\dots,a_{mn})^T,b=(b_{1},b_{2},\dots,b_{m})^T α1=(a11,a21,…,am1)T,α2=(a12,a22,…,am2)T,…,αn=(a1n,a2n,…,amn)T,b=(b1,b2,…,bm)T ,则方程组(I)(II)可表示为如下向量形式: x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 ( I ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=0 (I) x1α1+x2α2+⋯+xnαn=0(I) x 1 α 1 + x 2 α 2 + ⋯ + x n α n = b ( I I ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=b (II) x1α1+x2α2+⋯+xnαn=b(II)
1,设 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 为向量组,称 k 1 α 1 + k 2 α 2 + ⋯ + k n α n k_1\alpha_1+k_2\alpha_2+\dots+k_n\alpha_n k1α1+k2α2+⋯+knαn 为向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 的线性组合。
2,设 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 为向量组, b b b 为一个向量,若存在一组数 k 1 , k 2 , … , k n k_1,k_2,\dots,k_n k1,k2,…,kn ,使得 b = k 1 α 1 + k 2 α 2 + ⋯ + k n α n b=k_1\alpha_1+k_2\alpha_2+\dots+k_n\alpha_n b=k1α1+k2α2+⋯+knαn ,称向量 b b b 可由向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 线性表示。
2.2 相关性与线性表示基本概念
(一)相关性
对齐次线性方程组 x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 ( ∗ ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=0(*) x1α1+x2α2+⋯+xnαn=0(∗) (1)若方程组(*)只有零解,则向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 线性无关。
(2)若方程组(*)有非零解,即存在一组不全为零的数 k 1 , k 2 , … , k n k_1,k_2,\dots,k_n k1,k2,…,kn 使得 k 1 α 1 + k 2 α 2 + ⋯ + k n α n = 0 , k_1\alpha_1+k_2\alpha_2+\dots+k_n\alpha_n=0, k1α1+k2α2+⋯+knαn=0, 称向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 线性相关。
(二)线性表示
对非齐次线性方程组 x 1 α 1 + x 2 α 2 + ⋯ + x n α n = b ( ∗ ∗ ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=b (**) x1α1+x2α2+⋯+xnαn=b(∗∗) (1)若方程组(**)有解,即存在常数 k 1 , k 2 , … , k n k_1,k_2,\dots,k_n k1,k2,…,kn ,使得 b = k 1 α 1 + k 2 α 2 + ⋯ + k n α n b=k_1\alpha_1+k_2\alpha_2+\dots+k_n\alpha_n b=k1α1+k2α2+⋯+knαn ,称向量 b b b 可由向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 线性表示。
(2)若方程组(**)无解,称向量 b b b 不可由向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,…,αn 线性表示。
2.3 向量组相关性与线性表示的性质
这一块内容多,放在下一篇文章。
相关文章:
【考研数学】线形代数第三章——向量 | 基本概念、向量组的相关性与线性表示
文章目录 引言一、向量的概念与运算1.1 基本概念1.2 向量运算的性质 二、向量组的相关性与线性表示2.1 理论背景2.2 相关性与线性表示基本概念2.3 向量组相关性与线性表示的性质 引言 向量是线性代数的重点和难点。向量是矩阵,同时矩阵又是由向量构成的,…...
温故知新之:接口和抽象类有什么区别?
本文以下内容基于 JDK 8 版本。 1、接口介绍 接口是 Java 语言中的一个抽象类型,用于定义对象的公共行为。它的创建关键字是 interface,在接口的实现中可以定义方法和常量,其普通方法是不能有具体的代码实现的,而在 JDK 8 之后&…...
回归预测 | MATLAB实现SSA-RF麻雀搜索优化算法优化随机森林算法多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现SSA-RF麻雀搜索优化算法优化随机森林算法多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现SSA-RF麻雀搜索优化算法优化随机森林算法多输入单输出回归预测(多指标,多图)…...
文旅景区vr体验馆游乐场vr项目是什么
我们知道现在很多的景区或者游玩的地方,以及学校、科技馆、科普馆、商场或公园或街镇,都会建一些关于游玩以及科普学习的项目。从而增加学习氛围或者带动人流量等等。这样的形式,还是有很好的效果呈现。 普乐蛙VR体验馆案例 下面是普乐蛙做的…...
Vue Element upload组件和Iview upload 组件上传文件
今天要分享的是使用这俩个UI组件库的upload组件分别实现调用组件本身的上传方法实现和后台交互。接下来就是开车的时间,请坐稳扶好~ 一、element upload组件传送门 1、html文件 <el-upload ref"uploadRef" :action"uploadUrl" :data"…...
无涯教程-PHP - File 函数
文件系统功能用于访问和操纵文件系统,PHP为您提供了操纵文件的所有功能。 运行时配置 这些功能的行为受php.ini中的设置影响。 NameDefaultChangeableChangelogallow_url_fopen"1"PHP_INI_ALLPHP_INI_ALL in PHP < 4.3.4. PHP_INI_SYSTEM in PHP &l…...
elasticsearch 常用查询 7.4 版本
Elasticsearch 常用查询 match:全文查询exists:查询存在的字段must_not:查询不存在的字段ids:跟据id查询prefix:前缀查询range: 查询范围term:精准查询terms:多术语查询 本文基于es 7.4版本文档…...
ChatGpt 从入门到精通
相关资源下载地址: 基于ChatGPT的国际中文语法教学辅助应用的探讨.pdf 生成式人工智能技术对教育领域的影响-关于ChatGPT的专访.pdf 电子-从ChatGPT热议看大模型潜力.pdf 从图灵测试到ChatGPT——人机对话的里程碑及启示.pdf 正文 ChatGPT 是一种强大的自然语言处理模型&…...
vscode远程调试
安装ssh 在vscode扩展插件搜索remote-ssh安装 如果连接失败,出现 Resolver error: Error: XHR failedscode 报错,可以看这篇帖子vscode ssh: Resolver error: Error: XHR failedscode错误_阿伟跑呀的博客-CSDN博客 添加好后点击左上角的加号࿰…...
Vue3 数据响应式原理
核心: 通过Proxy(代理): 拦截对data任意属性的任意(13种)操作, 包括属性值的读写, 属性的添加, 属性的删除等… 通过 Reflect(反射): 动态对被代理对象的相应属性进行特定的操作 const userData {name: "John",age: 12 };let proxyUser new Proxy(use…...
2023.08.20 学习周报
文章目录 摘要文献阅读1.题目2.现有问题3.解决方案4.本文贡献5.方法5.1 利用长短期记忆网络学习时空演化特征5.2 构建用于气象辅助信息编码的堆叠自编码器5.3 使用多任务学习发现全市通用模式5.4 模型 6. 实验6.1 数据集6.2 实验设置6.3 实验结果 7.结论8.展望 大气污染物传输总…...
软件测试技术之单元测试—工程师 Style 的测试方法(2)
怎么写单元测试? JUnit 简介 基本上每种语言和框架都有不错的单元测试框架和工具,例如 Java 的 JUnit、Scala 的 ScalaTest、Python的 unittest、JavaScript 的 Jest 等。上面的例子都是基于 JUnit 的,我们下面就简单介绍下 JUnit。 JUnit…...
项目中超图 for openlayer和超图for cesium同时引入的问题
一个项目中同时用到了超图的openlayer和cesium版本,首先我是外部引入的超图的开发包,你要是通过npm导入的那就没关系了。 <script type"text/javascript" src"/static/openlayer/supermap/ol/iclient-ol.min.js"></script&…...
3D与沉浸式技术,如何助力企业数字化转型?
说起3D,估计许多读者朋友会在第一时间想起《阿凡达》系列和《侏罗纪公园》系列电影大作。每一帧细节纤毫毕现的逼真画面,让观众几乎分不清虚拟与现实,完全沉浸在导演打造的视觉盛宴中。 事实上,除了大家所熟知的3D影视动画之外&am…...
excel vba 将多张数据表的内容合并到一张数据表
功能描述: 一个Excel文件有很多个 样式相同 的数据表, 需要将多张数据表的内容合并到一张数据表里。 vba实现代码如下: Attribute VB_Name "NewMacros" Option Explicit Public Const Const_OutSheetName As String "V…...
接口和抽象类的区别?解析接口和抽象类的特点和用法
接口和抽象类的区别?解析接口和抽象类的特点和用法 引言 在面向对象编程中,接口和抽象类是两个非常重要的概念。它们都可以用于定义一组相关的方法,但在实际使用中有一些差异。本文将探讨接口和抽象类的区别,并通过示例代码和测…...
vscode-vue项目格式化
一、插件要求 Prettier Vetur 二、配置文件 {"workbench.startupEditor": "newUntitledFile","files.autoSave": "off", // 关闭文件自动保存,避免开发时候页面变化"editor.tabSize": 2, // tab距离"ve…...
SAP MM学习笔记26- SAP中 振替转记(转移过账)和 在库转送(库存转储)1- 移动Type间振替转记
SAP 中在库移动 不仅有入库(GR),出库(GI),也可以是单纯内部的转记或转送。 1,振替转记(转移过账) 2,在库转送(库存转储) 1ÿ…...
SAP SPL(Special Ledger)之注释行项目-Noted Items
财务凭证过账里常见的SPL特殊总账标识根据业务主要有三种,BoE-billing of exchange: 汇票业务,包括商业汇票和银行汇票;Down Payment,预付款业务,包括供应商和客户预付款和申请;其它,一般是保证…...
学习平台助力职场发展与提升
近年来,随着互联网技术的发展,学习平台逐渐成为了职场发展和提升的必备工具。学习平台通过提供丰富的课程内容、灵活的学习时间和个性化的学习路径,帮助职场人士更好地提升自己的技能和知识储备,为职场发展打下坚实的基础。 学习…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
