计算机竞赛 基于LSTM的天气预测 - 时间序列预测
0 前言
🔥 优质竞赛项目系列,今天要分享的是
机器学习大数据分析项目
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 数据集介绍
df = pd.read_csv(‘/home/kesci/input/jena1246/jena_climate_2009_2016.csv’)
df.head()

如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。
给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。
下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。
下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。
def univariate_data(dataset, start_index, end_index, history_size, target_size):
data = []
labels = []
start_index = start_index + history_sizeif end_index is None:end_index = len(dataset) - target_sizefor i in range(start_index, end_index):indices = range(i-history_size, i)# Reshape data from (history`1_size,) to (history_size, 1)data.append(np.reshape(dataset[indices], (history_size, 1)))labels.append(dataset[i+target_size])return np.array(data), np.array(labels)
2 开始分析
2.1 单变量分析
首先,使用一个特征(温度)训练模型,并在使用该模型做预测。
2.1.1 温度变量
从数据集中提取温度
uni_data = df[‘T (degC)’]
uni_data.index = df[‘Date Time’]
uni_data.head()
观察数据随时间变化的情况

进行标准化
#标准化
uni_train_mean = uni_data[:TRAIN_SPLIT].mean()
uni_train_std = uni_data[:TRAIN_SPLIT].std()
uni_data = (uni_data-uni_train_mean)/uni_train_std
#写函数来划分特征和标签
univariate_past_history = 20
univariate_future_target = 0
x_train_uni, y_train_uni = univariate_data(uni_data, 0, TRAIN_SPLIT, # 起止区间univariate_past_history,univariate_future_target)
x_val_uni, y_val_uni = univariate_data(uni_data, TRAIN_SPLIT, None,univariate_past_history,univariate_future_target)
可见第一个样本的特征为前20个时间点的温度,其标签为第21个时间点的温度。根据同样的规律,第二个样本的特征为第2个时间点的温度值到第21个时间点的温度值,其标签为第22个时间点的温度……


2.2 将特征和标签切片
BATCH_SIZE = 256
BUFFER_SIZE = 10000
train_univariate = tf.data.Dataset.from_tensor_slices((x_train_uni, y_train_uni))
train_univariate = train_univariate.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()val_univariate = tf.data.Dataset.from_tensor_slices((x_val_uni, y_val_uni))
val_univariate = val_univariate.batch(BATCH_SIZE).repeat()
2.3 建模
simple_lstm_model = tf.keras.models.Sequential([
tf.keras.layers.LSTM(8, input_shape=x_train_uni.shape[-2:]), # input_shape=(20,1) 不包含批处理维度
tf.keras.layers.Dense(1)
])
simple_lstm_model.compile(optimizer='adam', loss='mae')
2.4 训练模型
EVALUATION_INTERVAL = 200
EPOCHS = 10
simple_lstm_model.fit(train_univariate, epochs=EPOCHS,steps_per_epoch=EVALUATION_INTERVAL,validation_data=val_univariate, validation_steps=50)
训练过程

训练结果 - 温度预测结果

2.5 多变量分析
在这里,我们用过去的一些压强信息、温度信息以及密度信息来预测未来的一个时间点的温度。也就是说,数据集中应该包括压强信息、温度信息以及密度信息。
2.5.1 压强、温度、密度随时间变化绘图

2.5.2 将数据集转换为数组类型并标准化
dataset = features.values
data_mean = dataset[:TRAIN_SPLIT].mean(axis=0)
data_std = dataset[:TRAIN_SPLIT].std(axis=0)
dataset = (dataset-data_mean)/data_stddef multivariate_data(dataset, target, start_index, end_index, history_size,target_size, step, single_step=False):data = []labels = []start_index = start_index + history_sizeif end_index is None:end_index = len(dataset) - target_sizefor i in range(start_index, end_index):indices = range(i-history_size, i, step) # step表示滑动步长data.append(dataset[indices])if single_step:labels.append(target[i+target_size])else:labels.append(target[i:i+target_size])return np.array(data), np.array(labels)
2.5.3 多变量建模训练训练
single_step_model = tf.keras.models.Sequential()single_step_model.add(tf.keras.layers.LSTM(32,input_shape=x_train_single.shape[-2:]))single_step_model.add(tf.keras.layers.Dense(1))single_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(), loss='mae')single_step_history = single_step_model.fit(train_data_single, epochs=EPOCHS,steps_per_epoch=EVALUATION_INTERVAL,validation_data=val_data_single,validation_steps=50)def plot_train_history(history, title):loss = history.history['loss']val_loss = history.history['val_loss']epochs = range(len(loss))plt.figure()plt.plot(epochs, loss, 'b', label='Training loss')plt.plot(epochs, val_loss, 'r', label='Validation loss')plt.title(title)plt.legend()plt.show()plot_train_history(single_step_history,'Single Step Training and validation loss')


6 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
计算机竞赛 基于LSTM的天气预测 - 时间序列预测
0 前言 🔥 优质竞赛项目系列,今天要分享的是 机器学习大数据分析项目 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/po…...
uniapp 回退到指定页面 保存页面状态
uniapp 历史页面回退到指定页面。 getCurrentPages() 内容如下 let delta getCurrentPages().reverse().findIndex(item > item.route "pages/popularScience/daodi") if(delta-1){uni.navigateTo({url: /pages/popularScience/daodi,success: res > {},fa…...
ansible(1)-- 部署ansible连接被控端
目录 一、部署ansible 1.1 安装 1.2 测试连接 192.168.136.55 ansible 192.168.136.56被控端 一、部署ansible 1.1 安装 zabbix-s只是主机名,不用在意,更好该主机也安装了zabbix,不好更改。 下载阿里云epel源 #安装阿里云的epel源&#…...
Log4j反序列化命令执行漏洞(CVE-2017-5645)Apache Log4j2 lookup JNDI 注入漏洞(CVE-2021-44228)
一.Log4j反序列化命令执行漏洞(CVE-2017-5645) Apache Log4j是一个用于Java的日志记录库,其支持启动远程日志服务器。Apache Log4j 2.8.2之前的2.x版本中存在安全漏洞。攻击者可利用该漏洞执行任意代码 环境:vulhub 工具下载地址࿱…...
echarts 之 科技感进度条
1.图片展示 2.代码实现 /* ng qty 进度条 */ <template><div class"ngqty-progress"><div class"ngqty-info"><span>X4</span><span>50%</span></div><div :id"barNgQtyProgress index" c…...
基于gin关于多级菜单的处理
多级菜单是很多业务场景需要的。下面是一种处理方式 // 生成树结构 func tree(menus []*video.XkVideoCategory, parentId uint) []*video.XkVideoCategory {//定义子节点目录var nodes []*video.XkVideoCategoryif reflect.ValueOf(menus).IsValid() {//循环所有一级菜单for …...
Oracle/PL/SQL奇技淫巧之Lable标签与循环控制
在一些存储过程场景中,可能存在需要在满足某些条件时跳出循环的场景, 但是在PL/SQL中,不能使用break语句直接跳出循环, 但是可以通过lable标签的方式跳出循环,例: <<outer_loop>> FOR i IN 1..5 LOOPDBMS…...
Docker基础操作
1.安装docker服务,配置镜像加速器 安装docker服务 清理缓存 sudo yum remove docker \ docker-client \ docker-client-latest \ docker-common \ docker-latest \ docker-latest-logrotate \ docker-logrotate \ docker-enginesystemctl enable --now docker 脚…...
AMBA总线协议(8)——AHB(六):分割传输
一、前言 在之前的文章中,我们重点介绍了AHB传输的仲裁,首先介绍了仲裁相关的信号,然后分别介绍了请求总线访问,授权总线访问,猝发提前终止,锁定传输和默认主机总线,在本文中我们将继续介绍AHB的…...
时序分解 | MATLAB实现基于SWD群体分解的信号分解分量可视化
时序分解 | MATLAB实现基于SWD群体分解的信号分解分量可视化 目录 时序分解 | MATLAB实现基于SWD群体分解的信号分解分量可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于SWD群体分解的分量可视化,基于群体分解的信号分解技术,MATLAB程序…...
【makefile】自动化变量的简述及实例
文章目录 10. env20. 简述百度百科常用的自动化变量 30. 实例90. 附件下载 10. env ubuntu1804 GNU Make 4.120. 简述 百度百科 https://baike.baidu.com/item/Makefile/4619787?frge_ala makefile 文件的格式: 目标:依赖命令软件编译的流程概述&am…...
IntelliJ IDEA 官方网站 idea官网 http://www.jetbrains.com/idea/
IntelliJ IDEA 官方网站 idea官网 http://www.jetbrains.com/idea/ Idea下载官网一键直达: 官网一键直达...
C#,《小白学程序》第一课:初识程序
曰:扫地僧练就绝世武功的目的是为了扫地更干净。 1 文本格式 /// <summary> /// 《小白学程序》第一课:初识程序 /// </summary> /// <param name"sender"></param> /// <param name"e"></param&…...
LeetCode--HOT100题(38)
目录 题目描述:226. 翻转二叉树(简单)题目接口解题思路代码 PS: 题目描述:226. 翻转二叉树(简单) 给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。 LeetCode做题链…...
C语言:指针(超深度讲解)
目录 指针: 学习目标: 指针可以理解为: 字符指针: 定义:字符指针 char*。 字符指针的使用: 练习: 指针数组: 概念:指针数组是一个存放指针的数组。 实现模拟二维…...
Docker详解
文章目录 Docker详解一、Docker简介什么是容器 ?容器技术有哪些优点 ?什么是Docker ?Docker的特点Docker的使用场景 二、Docker的基本组成Docker 客户端 / 守护进程Docker Image 镜像Docker Container 容器Docker Registry 仓库 三、Docker 依…...
软件开发方法:复用与扩展
软件开发方法:复用与扩展 一、面向对象二、进一步认识 一、面向对象 封装 工程上的意义:屏蔽细节,隔离变化 public、protected、private 继承 工程上的意义:复用 多态工程上的意义:高内聚,低耦合 —— 面…...
C++新经典09--函数新特性、inline内联函数与const详解
函数回顾与后置返回类型 函数定义中如果有形参则形参应该有名字,而不光是只有类型,但是如果并不想使用这个形参,换句话说这个形参并不在这个函数中使用,则不给形参名也可以,但在调用这个函数的时候,该位置…...
C++中机器人应用程序的行为树(ROS2)
马库斯布赫霍尔茨 一、说明 以下文章为您提供了对机器人应用程序或框架中经常使用的行为树的一般直觉:ROS,Moveit和NAV2。了解行为 Tress (BT) 框架的原理为您提供了在游戏领域应用知识的绝佳机会。BT可以与Unity或Unreal集成。 由…...
像Vuex一样使用redux
redux基础知识 本篇文章主要介绍redux的基本使用方法,并简单封装,像vuex一样写redux 学习文档 英文文档: https://redux.js.org/ 中文文档: http://www.redux.org.cn/ Github: https://github.com/reactjs/redux redux是什么 redux和vuex几乎是一…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
Python网页自动化Selenium中文文档
1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...
五子棋测试用例
一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏,有着深厚的文化底蕴。通过将五子棋制作成网页游戏,可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家,都可以通过网页五子棋感受到东方棋类…...
高考志愿填报管理系统---开发介绍
高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发,采用现代化的Web技术,为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## 📋 系统概述 ### 🎯 系统定…...
篇章二 论坛系统——系统设计
目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...
加密通信 + 行为分析:运营商行业安全防御体系重构
在数字经济蓬勃发展的时代,运营商作为信息通信网络的核心枢纽,承载着海量用户数据与关键业务传输,其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级,传统安全防护体系逐渐暴露出局限性&a…...
基于stm32F10x 系列微控制器的智能电子琴(附完整项目源码、详细接线及讲解视频)
注:文章末尾网盘链接中自取成品使用演示视频、项目源码、项目文档 所用硬件:STM32F103C8T6、无源蜂鸣器、44矩阵键盘、flash存储模块、OLED显示屏、RGB三色灯、面包板、杜邦线、usb转ttl串口 stm32f103c8t6 面包板 …...
python打卡第47天
昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图,展示模…...
