DETRs with Collaborative Hybrid Assignments Training论文笔记
| Title:[DETRs with Collaborative Hybrid Assignments Training |
| Code |
文章目录
- 1. Motivation
- 2. one to one VS one to many
- 3. Method
- (1)Encoder feature learning
- (2)Decoder attention learning
1. Motivation
当前的DETR检测器中,为了实现端到端的检测,使用的标签分配策略是二分匹配,使得一个ground-truth只能分配到一个正样本。分配为正样本的queries太少,从而导致对encoder的输出监督过于稀疏(sparse)。
与二分匹配相反,在传统的检测器(如Faster-RCNN、ATSS)中,一个ground-truth会根据位置关系分配到多个anchor作为正样本。这种标签分配方式能够为特征图上的更多区域提供位置监督,就能让检测器的特征学习得更好。
Co-DETR的关键就是利用通用的one-to-many label assignments来提高DETR检测器训练encoder和decoder的有效性及效率。
2. one to one VS one to many
为了比较这两种不同的标签分配方法在Encoder特征图上的差异,论文直接把Deformable-DETR的decoder换成了ATSS head,使用相同的可视化方法进行了比较,效果如下:

很明显,一些显著区域中的特征在one to many matching方法中被充分激活,但在one to one matching中很少被激活。因此,论文认为正是这两种分配方式的差异使得DETR模型中的encoder特征表达能力减弱了。

同时,作者还对encoder生成的特征表示和decoder中的attention进行了定量分析:
- 左边的IoF-IoB曲线表明ATSS相较于Defomable DETR更容易区分前景和背景;
- 右边的IoF-IoB曲线表明Group DETR(其将更多的正样本query引入到decoder中)和Co-Deformable-DETR拥有更多的正样本query,其更有利于cross attention的学习。
最终的结论同样是:一对一匹配相比于一对多匹配会分别损害encoder特征和decoder中attention的学习。
3. Method

为了能够让DETR检测器利用到一对多匹配的优势,论文基于DETR的训练框架引入了两点改进,分别对应到上文提到的encoder feature learning和decoder attention learning。
Co-DETR只在训练阶段加入辅助检测头,因此仅在训练阶段中引入额外的计算开销,不会影响到模型推理的效率。
(1)Encoder feature learning
在上文的分析中,我们发现在encoder后插入一个传统的ATSS检测头就能让encoder的特征更加显著。
受到这个的启发,为了增强encoder的学习能力,论文首先利用multi-scale adapter,将encoder输出的特征转化为多尺度的特征。
对于使用单尺度特征的DETR,这个adapter的结构就类似于simple feature pyramid。而对于多尺度特征的DETR,这个结构就是恒等映射。之后我们将多尺度的特征送入到多个不同的辅助检测头,这些检测头都使用一对多的标签分配。
由于传统检测器的检测头结构轻量,因此带来的额外训练开销较少。
(2)Decoder attention learning
为了增强decoder的attention学习,我们提出了定制化的正样本query生成。
在上文的分析中,我们发现传统检测器中的anchor是密集排列的,且能够提供dense且尺度敏感的监督信息。
那么我们能不能把传统检测器中的anchor作为query来为attention的学习提供足够的监督呢?当然是可以的,在上一步中,辅助的检测头已经分配好了各自的正样本anchor及其匹配的ground-truth。
我们选择直接继承辅助检测头的标签分配结果,将这些正样本anchor转化为正样本query送到decoder中,在loss计算时无需二分匹配,直接使用之前的分配结果。
与其他引入辅助query的方法相比,这些工作会不可避免地引入大量的负样本query,而我们只在decoder引入了正样本,因此带来的额外训练代价也较小。
相关文章:
DETRs with Collaborative Hybrid Assignments Training论文笔记
Title:[DETRs with Collaborative Hybrid Assignments Training Code 文章目录 1. Motivation2. one to one VS one to many3. Method(1)Encoder feature learning(2)Decoder attention learning 1. Motivation 当前…...
慧程HiperM3系列工业物联网、MES平台
产品链接:慧程产品主页...
SHELL 基础 入门(三) Bash 快捷键 命令执行顺序,详解通配符
目录 Bash 常用快捷键 输入输出重定向 << 用法 输出重定向 命令执行顺序 ; 分号 && || 通配符 传统通配符 ? * [ ] [ - ] [ ^ ] 常用字符 强调 : { } 生成序列 Bash 常用快捷键 Ctrl A 把光…...
nvm安装使用教程
文章目录 下载配置安装最新稳定版 node安装指定版本查看版本切换版本删除版本 常见问题安装node后 显示拒绝访问的问题使用cnpm会报错的问题降低cnpm版本npm镜像 下载 NVM for Windows 下载地址:https://link.juejin.cn/?targethttps%3A%2F%2Fgithub.com%2Fcoreyb…...
【Android】JUnit和Espresso单元测试新手快速入门
引入依赖 android {defaultConfig {testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"}}dependencies {testImplementation junit:junit:4.13.2androidTestImplementation androidx.test.ext:junit:1.1.0androidTestImplementation androidx.tes…...
8.4 【C语言】通过指针引用字符串
8.4.1 字符串的引用方式 在C程序中,字符串是存放在字符数组中的。想引用一个字符串,可以用以下两种方法。 (1)用字符数组存放一个字符串,可以通过数组名和下标引用字符串中一个字符,也可以通过数组名和格…...
【广州华锐视点】AR配电所巡检系统:可视化巡检利器
随着科技的发展,人工智能、大数据等技术逐渐应用于各个领域,为人们的生活带来便利。在电力行业,AR(增强现实)技术的应用也日益广泛。AR配电所巡检系统作为一种新型的巡检方式,可以实现多种功能,提高巡检效率࿰…...
微服务中间件--http客户端Feign
http客户端Feign http客户端Feigna.Feign替代RestTemplateb.自定义Feign的配置c.Feign的性能优化d.Feign的最佳实践分析e.Feign实现最佳实践(方式二) http客户端Feign a.Feign替代RestTemplate 以前利用RestTemplate发起远程调用的代码: String url "http:…...
C语言学习系列-->【关于qsort函数的详解以及它的模拟实现】
文章目录 一、概述二、qsort函数参数介绍三、qsort实现排序3.1 qsort实现整型数组排序3.2 qsort实现结构体数组排序 四、模拟实现qsort函数 一、概述 对数组的元素进行排序 对数组中由 指向的元素进行排序,每个元素字节长,使用该函数确定顺序。 此函数使…...
Linux系统安全:NAT(SNAT、DNAT)
目录 一.NAT 二.SNAT 三.DNAT 一.NAT NAT: network address translation,支持PREROUTING,INPUT,OUTPUT,POSTROUTING四个链 请求报文:修改源/目标IP, 响应报文:修改源/目标IP,根据…...
【数据库】MySQL存储过程:提升数据库性能和操作效率的利器
在数据库管理系统中,存储过程是一种重要的数据库对象,它允许将一组复杂的SQL语句组合起来,形成一个独立的单元进行重复使用。存储过程可以极大地提高数据库的性能和操作效率,降低网络流量,减轻系统负载。本文将深入探讨…...
rust写一个多线程和协程的例子
当涉及到多线程和协程时,Rust提供了一些非常强大的工具,其中最常用的库之一是tokio,它用于异步编程和协程。下面我将为你展示一个简单的Rust程序,演示如何使用多线程和协程。 首先,你需要在你的项目的Cargo.toml文件中…...
react18+antd5.x(1):Notification组件的二次封装
antdesign已经给我们提供了很好的组件使用体验,但是我们还需要根据自己的项目业务进行更好的封装,减少我们的代码量,提升开发体验 效果展示 开起来和官网的使用没什么区别,但是我们在使用的时候,进行了二次封装,更利于我们进行开发 MyNotification.jsx,是我们的业务页面…...
jenkins运行pytest测试用例脚本报错:没有权限,无法写日志PermissionError:[Error 13]Permission denied
报错信息: PermissionError:[Error 13]Permission denied:‘/var/jenkins_home/workspace/deleverySystem/Delivery_System/out_files/logs/waimai_20230823.log’ 解决方法: 在jenkins容器内部输入 chmod -R 777 /var/jenkins_home/works…...
数据结构 day1
1>x.mind 2>间接定义结构体数组,进行4种方式的定义和初始化 3>定义结构体存储10辆车(车的信息:品牌、单价、颜色) 1.定义函数,实现循环输入 2.定义函数,实现排序 3.定义函数,计算红色车…...
湖北咸宁农业三维扫描数字化农业3d打印制造应用-CASAIM中科广电
农业是人类衣食之源、生存之本,是一切生产的首要条件,CASAIM在农业三维扫描和3d打印应用上有丰富经验。 1.三维扫描技术在农业领域的应用 CASAIM三维扫描是集光学、机电和计算机技术于一体的高新无损检测技术,能够对实物的空间外形、结构乃…...
Jenkins的定时任务配置
jenkins配置定时任务位置(点击日程表的问好可查看语法配置) jenkins的定时任务的参数 # 定时任务参数(每个参数之间使用tab键或空格分隔)MINUTE HOUR DOM MONTH DOW 参数解释取值范围 MINUTE 分钟0-59HOUR小时0-23DOM一月的天数1-31MONTH月份1-12DOW 一周的天数0…...
THINKPHP 微联云投票系统源码独立版 + 支持刷礼物
THINKPHP 微联云投票系统源码独立版 支持刷礼物 nginxphp7.2以上 mysql5.6以上 简单测试后台基本没什么问题,暂时发现H5前端有bug,自行修复。...
Mongodb两种启动方法
一、命令行启动 1.修改存放数据库的位置 说明:E:\data\mongodb;我在E盘创建的文件夹mongodb mongod --dbpathE:\data\mongodb 2.成功启动 说明:默认端口27017,代表已经启动成功 ,并在mongodb自动创建文件 二、配置项…...
Python:列表的浅拷贝与深拷贝
在python语言中,因为其面向对象的特性,在进行列表拷贝时可能会出现一些意想不到的结果,涉及到列表的浅拷贝和深拷贝相关问题,本文将对其进行总结。 首先我们来看以下代码。 my_list [1, 2, 3] your_list my_list your_list[0] …...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...
