当前位置: 首页 > news >正文

2023年国赛 高教社杯数学建模思路 - 案例:粒子群算法

文章目录

  • 1 什么是粒子群算法?
  • 2 举个例子
  • 3 还是一个例子
  • 算法流程
  • 算法实现
  • 建模资料

# 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 什么是粒子群算法?

粒子群算法(Particle Swarm Optimization,PSO)是一种模仿鸟群、鱼群觅食行为发展起来的一种进化算法。其概念简单易于编程实现且运行效率高、参数相对较少,应用非常广泛。粒子群算法于1995年提出,距今(2019)已有24年历史。
  
  粒子群算法中每一个粒子的位置代表了待求问题的一个候选解。每一个粒子的位置在空间内的好坏由该粒子的位置在待求问题中的适应度值决定。每一个粒子在下一代的位置有其在这一代的位置与其自身的速度矢量决定,其速度决定了粒子每次飞行的方向和距离。在飞行过程中,粒子会记录下自己所到过的最优位置 P,群体也会更新群体所到过的最优位置G 。粒子的飞行速度则由其当前位置、粒子自身所到过的最优位置、群体所到过的最优位置以及粒子此时的速度共同决定。

在这里插入图片描述

2 举个例子

在这里插入图片描述
在一个湖中有两个人他们之间可以通信,并且可以探测到自己所在位置的最低点。初始位置如上图所示,由于右边比较深,因此左边的人会往右边移动一下小船。

在这里插入图片描述

现在左边比较深,因此右边的人会往左边移动一下小船

一直重复该过程,最后两个小船会相遇

在这里插入图片描述
得到一个局部的最优解
在这里插入图片描述将每个个体表示为粒子。每个个体在某一时刻的位置表示为,x(t),方向表示为v(t)

在这里插入图片描述

p(t)为在t时刻x个体的自己的最优解,g(t)为在t时刻所有个体的最优解,v(t)为个体在t时刻的方向,x(t)为个体在t时刻的位置

在这里插入图片描述

下一个位置为上图所示由x,p,g共同决定了

在这里插入图片描述

种群中的粒子通过不断地向自身和种群的历史信息进行学习,从而可以找到问题的最优解。

3 还是一个例子

粒子群算法是根据鸟群觅食行为衍生出的算法。现在,我们的主角换成是一群鸟。
在这里插入图片描述

小鸟们的目标很简单,要在这一带找到食物最充足的位置安家、休养生息。它们在这个地方的搜索策略如下:
  1. 每只鸟随机找一个地方,评估这个地方的食物量。
  2. 所有的鸟一起开会,选出食物量最多的地方作为安家的候选点G。
  3. 每只鸟回顾自己的旅程,记住自己曾经去过的食物量最多的地方P。
  4. 每只鸟为了找到食物量更多的地方,于是向着G飞行,但是呢,不知是出于选择困难症还是对P的留恋,或者是对G的不信任,小鸟向G飞行时,时不时也向P飞行,其实它自己也不知道到底是向G飞行的多还是向P飞行的多。
  5. 又到了开会的时间,如果小鸟们决定停止寻找,那么它们会选择当前的G来安家;否则继续2->3->4->5来寻找它们的栖息地。

在这里插入图片描述

上图描述的策略4的情况,一只鸟在点A处,点G是鸟群们找到过的食物最多的位置,点P是它自己去过的食物最多的地点。V是它现在的飞行速度(速度是矢量,有方向和大小),现在它决定向着P和G飞行,但是这是一只佛系鸟,具体飞多少随缘。如果没有速度V,它应该飞到B点,有了速度V的影响,它的合速度最终使它飞到了点C,这里是它的下一个目的地。如果C比P好那么C就成了下一次的P,如果C比G好,那么就成了下一次的G。

算法流程

在这里插入图片描述

算法实现

这里学长用python来给大家演示使用粒子群解函数最优解

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
import random# 定义“粒子”类
class parti(object):def __init__(self, v, x):self.v = v                    # 粒子当前速度self.x = x                    # 粒子当前位置self.pbest = x                # 粒子历史最优位置class PSO(object):def __init__(self, interval, tab='min', partisNum=10, iterMax=1000, w=1, c1=2, c2=2):self.interval = interval                                            # 给定状态空间 - 即待求解空间self.tab = tab.strip()                                              # 求解最大值还是最小值的标签: 'min' - 最小值;'max' - 最大值self.iterMax = iterMax                                              # 迭代求解次数self.w = w                                                          # 惯性因子self.c1, self.c2 = c1, c2                                           # 学习因子self.v_max = (interval[1] - interval[0]) * 0.1                      # 设置最大迁移速度#####################################################################self.partis_list, self.gbest = self.initPartis(partisNum)                 # 完成粒子群的初始化,并提取群体历史最优位置self.x_seeds = np.array(list(parti_.x for parti_ in self.partis_list))    # 提取粒子群的种子状态 ###self.solve()                                                              # 完成主体的求解过程self.display()                                                            # 数据可视化展示def initPartis(self, partisNum):partis_list = list()for i in range(partisNum):v_seed = random.uniform(-self.v_max, self.v_max)x_seed = random.uniform(*self.interval)partis_list.append(parti(v_seed, x_seed))temp = 'find_' + self.tabif hasattr(self, temp):                                             # 采用反射方法提取对应的函数gbest = getattr(self, temp)(partis_list)else:exit('>>>tab标签传参有误:"min"|"max"<<<')return partis_list, gbestdef solve(self):for i in range(self.iterMax):for parti_c in self.partis_list:f1 = self.func(parti_c.x)# 更新粒子速度,并限制在最大迁移速度之内parti_c.v = self.w * parti_c.v + self.c1 * random.random() * (parti_c.pbest - parti_c.x) + self.c2 * random.random() * (self.gbest - parti_c.x)if parti_c.v > self.v_max: parti_c.v = self.v_maxelif parti_c.v < -self.v_max: parti_c.v = -self.v_max# 更新粒子位置,并限制在待解空间之内if self.interval[0] <= parti_c.x + parti_c.v <=self.interval[1]:parti_c.x = parti_c.x + parti_c.velse:parti_c.x = parti_c.x - parti_c.vf2 = self.func(parti_c.x)getattr(self, 'deal_'+self.tab)(f1, f2, parti_c)             # 更新粒子历史最优位置与群体历史最优位置def func(self, x):                                                       # 状态产生函数 - 即待求解函数value = np.sin(x**2) * (x**2 - 5*x)return valuedef find_min(self, partis_list):                                         # 按状态函数最小值找到粒子群初始化的历史最优位置parti = min(partis_list, key=lambda parti: self.func(parti.pbest))return parti.pbestdef find_max(self, partis_list):parti = max(partis_list, key=lambda parti: self.func(parti.pbest))   # 按状态函数最大值找到粒子群初始化的历史最优位置return parti.pbestdef deal_min(self, f1, f2, parti_):if f2 < f1:                          # 更新粒子历史最优位置parti_.pbest = parti_.xif f2 < self.func(self.gbest):self.gbest = parti_.x            # 更新群体历史最优位置def deal_max(self, f1, f2, parti_):if f2 > f1:                          # 更新粒子历史最优位置parti_.pbest = parti_.xif f2 > self.func(self.gbest):self.gbest = parti_.x            # 更新群体历史最优位置def display(self):print('solution: {}'.format(self.gbest))plt.figure(figsize=(8, 4))x = np.linspace(self.interval[0], self.interval[1], 300)y = self.func(x)plt.plot(x, y, 'g-', label='function')plt.plot(self.x_seeds, self.func(self.x_seeds), 'b.', label='seeds')plt.plot(self.gbest, self.func(self.gbest), 'r*', label='solution')plt.xlabel('x')plt.ylabel('f(x)')plt.title('solution = {}'.format(self.gbest))plt.legend()plt.savefig('PSO.png', dpi=500)plt.show()plt.close()if __name__ == '__main__':PSO([-9, 5], 'max')

效果
在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

相关文章:

2023年国赛 高教社杯数学建模思路 - 案例:粒子群算法

文章目录 1 什么是粒子群算法&#xff1f;2 举个例子3 还是一个例子算法流程算法实现建模资料 # 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 什么是粒子群算法&#xff1f; 粒子群算法&#xff08;Pa…...

【C#学习笔记】数据类中常用委托及接口——以List<T>为例

文章目录 List\<T\>/LinkedList \<T\>为什么是神&#xff1f;&#xff08;泛型为什么是神&#xff09;一些常见&#xff0c;通用的委托和接口ComparisonEnumerator List<T>/LinkedList <T>为什么是神&#xff1f;&#xff08;泛型为什么是神&#xff0…...

idea的断点调试

1、行断点 首先在代码的最左侧点击会显示红色的圆圈 第二步在main方法中右键选中debug run进行运行 会出现下面图片的情况 出现上图之后&#xff0c;点击console 下一步 这个时候就可以看到调试的结果了 6、方法调用栈&#xff1a;这里显示了该线程调试所经过的所有方法&…...

vue和react学哪一个比较有助于以后发展?

前言 首先声明vue和react这两个框架都是很优秀的前端框架&#xff0c;使用的人群下载量上数量也是相当的庞大&#xff0c;这篇文章没有贬低或者攻击任何一个框架的意思&#xff0c;只在于根据答主的问题来对这两个框架做出对比&#xff0c;以方便大家更加清晰的了解到当下vue和…...

【SkyWalking】分布式服务追踪与调用链系统

1、基本介绍 SkyWalking是一个开源的观测平台&#xff0c;官网&#xff1a;Apache SkyWalking&#xff1b; 可监控&#xff1a;分布式追踪调用链 、jvm内存变化、监控报警、查看服务器基本配置信息。 2、SkyWalking架构原理 在整个skywalking的系统中&#xff0c;有三个角色&am…...

Python“牵手”速卖通商品详情API接口运用场景及功能介绍

速卖通电商API接口是针对速卖通提供的电商服务平台&#xff0c;为开发人员提供了简单、可靠的技术来与速卖通电商平台进行数据交互&#xff0c;实现一系列开发、管理和营销等操作。其中包括商品详情API接口&#xff0c;通过这个API接口商家可以获取商品的详细信息&#xff0c;包…...

java调用python脚本的示例

java调用python脚本的示例 import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader;public class JavaCallPythonScript {public static void main(String[] args) {// 调用Python脚本的命令String pythonScriptPath "path/to/y…...

【C语言】柔性数组(可边长数组)

一、介绍 柔性数组&#xff08;Flexible Array&#xff09;&#xff0c;又称可变长数组。一般数组的长度是在编译时确定&#xff0c;而柔性数组对象的长度在运行时确定。在定义结构体时允许创建一个空数组&#xff08;例如&#xff1a;arr [ 0 ] &#xff09;&#xff0c;该数…...

C++信息学奥赛1131:基因相关性

这段代码的功能是比较两个字符串的相似度&#xff0c;并根据给定的阈值判断是否相似。 解析注释后的代码如下&#xff1a; #include <iostream> #include <string> using namespace std;int main() {double bf; // 定义双精度浮点数变量bf&#xff0c;用于存储阈…...

如何保证分布式系统中服务的高可用性:应对 ZooKeeper Leader 节点故障的注册处理策略

推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 「java、python面试题」来自UC网盘app分享&#xff0c;打开手机app&#xff0c;额外获得1T空间 https://dr…...

SQL注入之延时注入

文章目录 延时注入是什么&#xff1f;延时注入获取数据库版本号 延时注入是什么&#xff1f; 延时注入就是利用sleep()函数通过if语句判断所写的语句真假&#xff0c;如果为真返回我们想要的东西&#xff08;例如&#xff1a;数据库的长度&#xff0c;数据库的名字等&#xff0…...

运维高级学习--Docker(二)

1、使用mysql:5.6和 owncloud 镜像&#xff0c;构建一个个人网盘。 #拉取mysql5.6和owncloud镜像 [rootlocalhost ~]# docker pull mysql:5.6 [rootlocalhost ~]# docker pull owncloud [rootlocalhost ~]# docker images REPOSITORY TAG IMAGE ID CREATED …...

QT的核心——信号与槽

目录 回顾C 语言信号 1、信号与槽 2、关联信号与槽 2.1自动关联信号与槽 2.2手动关联信号与槽 2.3断开信号与槽 3、自定义信号 3.1自定义信号使用条件 3.2自定义槽函数使用条件 4、信号与槽参数传递 4.1自定义一个带参的信号 4.2关联带参的信号与槽 4.3发送一个带…...

【业务功能篇73】web系统架构演变-单体-集群-垂直化-服务化-微服务化

1.服务架构的演 1.1 单体架构 单体架构应该是我们最先接触到的架构实现了&#xff0c;在单体架构中使用经典的三层模型&#xff0c;即表现层&#xff0c;业务逻辑层和数据访问层。 单体架构只适合在应用初期&#xff0c;且访问量比较下的情况下使用&#xff0c;优点是性价比很…...

MyCAT命令行监控

9066端口 &#xff0c;用mysql命令行连接 Mysql –utest –ptest –P9066 show help 可显示所有相关管理命令 显示后端物理库连接信息&#xff0c;包括当前连接数&#xff0c;端口 Show backend Show connection 显示当前前端客户端连接情况&#xff0c;已经网络流量信息、…...

【python】正则表达式匹配数据

前言 使用正则表达式处理数据&#xff0c;可进行字符串匹配、提取和替换等操作。在python中&#xff0c;通过re库完成正则匹配的操作。 一、正则语法规则 1.常用匹配符 模式描述^匹配字符串开头$匹配字符串结尾.匹配任意字符*匹配前面的字符零次或多次匹配前面的字符一次或多…...

【C++】用Windows API在控制台实现选择选项

2023年8月23日&#xff0c;周三上午 今天上午花了一个小时来实现这个 这个程序在碰到边界时会发出声音&#xff0c; 通过调用Windows API的Beep函数来实现。 #include<Windows.h> #include<conio.h> #include<iostream> #include<cstdlib>const int …...

Golang 批量执行/并发执行

提到Golang&#xff0c;都说Golang 天生高并发。所以分享一下我认为的Golang高并发精髓 简单的并发执行util package util import ("context""sync" )type batchRunner struct {BatchSize intctx context.Contextchannel chan func()wg sy…...

使用go语言、Python脚本搭建一个简单的chatgpt服务网站。

使用go语言、Python脚本搭建一个简单的GPT服务网站 前言 研0在暑假想提升一下自己&#xff0c;自学了go语言编程和机器学习相关学习&#xff0c;但是一味学习理论&#xff0c;终究是枯燥的&#xff0c;于是自己弄点小项目做。 在这之前&#xff0c;建议您需要掌握以下两个技…...

基于java会议室预约系统设计与实现

摘要 一个企业的发展离不开相关的规定流程。信息化到来的今天在我们的生活当中。离不开各种信息化的支持。比如钉钉会议预约、美团买菜、扫码签到等各种信息化软件。他们涉及我们生活中的方方面面给我们的生活提供了更大的便利性。大到政府、企业办公小到人们的衣食住行都离不开…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...