当前位置: 首页 > news >正文

TensorRT推理手写数字分类(三)

系列文章目录

(一)使用pytorch搭建模型并训练
(二)将pth格式转为onnx格式
(三)onxx格式转为engine序列化文件并进行推理


文章目录

  • 系列文章目录
  • 前言
  • 一、TensorRT是什么?
  • 二、如何通过onnx生成engine
    • 使用trtexec生成engine
    • 使用python接口
  • 三、进行推理
  • 总结


前言

  上一节我们已经成功搭从pth文件转为onnx格式的文件,并对导出的onnx文件进行了验证,结果并无问题。这一节我们就从这个onnx文件入手,一步一步生成engine文件并使用tensorrt进行推理。


一、TensorRT是什么?

  NVIDIA TensorRT™ 是用于高性能深度学习推理的 SDK。此 SDK 包含深度学习推理优化器和运行时环境,可为深度学习推理应用提供低延迟和高吞吐量。通俗来说,TensorRT是NVIDIA针对自家GPU开发出来的一个推理框架,它使用了一些算法和操作来优化网络推理性能,提高深度学习模型在GPU上的推理速度。
在这里插入图片描述
我们使用TensorRT这个框架可以加快我们手写数字分类模型的推理速度。
TensorRT的安装方式我之前也写过一期博客:参考这里。

这里我们假设已经安装好了TensorRT,我这里安装的版本是TensorRT-8.0.1.6。在生成engine文件之前,先介绍一个很有用的工具trtexec。trtexec是一个命令行工具,它可以帮助我们不用写代码就可以生成engine,以及很多其他有用的功能,感兴趣的读者可以自己探索,这里我们只使用几种常见的命令行参数。
有关trtexec的详细参数可以参考这篇博客。

二、如何通过onnx生成engine

  整理一下,我们现在已经有了onnx文件,并且安装好了tensorrt,现在我们的目的是通过生成engine文件。onnx文件之前我们我们已经介绍过了它是一个什么东西,那engine文件又是什么呢?

TensorRT中的engine文件是一个二进制文件,它包含了一个经过优化的深度学习模型。这个文件可以被用来进行推理,而不需要重新加载和优化模型。在使用TensorRT进行推理时,首先需要将训练好的模型转换为TensorRT engine文件,然后使用这个文件进行推理。

也就是说,我们只需先生成一次engine,这个engine文件包含了优化后的模型(这个优化是TensoRT自己做的)。在以后进行推理的时候,我们只需要加载这个engine即可,而不需要重头开始。

使用trtexec生成engine

TensorRT-8.0.1.6/bin/trtexec --onnx=model.onnx --saveEngine=model.engine --buildOnly

在命令行输入这行指令即可帮助我们生成model.engine。trtexec命令还有许多其他的参数,感兴趣自行了解,这里我们只使用了–onnx,表示输入的是onnx文件,–saveEngine表示存储engine文件,–buildOnly表示只构建,不进行推理。

使用python接口

代码如下(示例):

import os
import tensorrt as trtonnx_file = '/home/wjq/wjqHD/pytorch_mnist/model.onnx'
nHeight, nWidth = 28, 28
trtFile = '/home/wjq/wjqHD/pytorch_mnist/model.engine'# Parse network, rebuild network, and build engine, then save engine
logger = trt.Logger(trt.Logger.VERBOSE)builder = trt.Builder(logger)network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()parser = trt.OnnxParser(network, logger)if not os.path.exists(onnx_file):print('ONNX file {} not found.'.format(onnx_file))exit()
print("Loading ONNX file from path {}...".format(onnx_file))with open(onnx_file, 'rb') as model:if not parser.parse(model.read()):print('ERROR: Failed to parse the ONNX file.')for error in range(parser.num_errors):print(parser.get_error(error))exit()print("Succeed to parse the ONNX file.")input_tensor = network.get_input(0)
# 这是输入大小
profile.set_shape(input_tensor.name, [1, 1, nHeight, nWidth], [1, 1, nHeight, nWidth], [1, 1, nHeight, nWidth])
config.add_optimization_profile(profile)engineString = builder.build_serialized_network(network, config)  # 序列化engine文件
if engineString == None:print("Failed building engine!")exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:f.write(engineString)

使用上述的python代码,最终我们也可以生成一个engine文件。这段代码里面的api,大家可以具体去google寻找解释,我在这里只是展示了一种可能。如有问题,欢迎评论区沟通。

我们也可以使用trtexec工具来验证我们生成的engine是否正确,命令行指令为:

TensorRT-8.0.1.6/bin/trtexec --loadEngine=model.engine --exportProfile=layerProfile.json --batch=1 --warmUp=1000 --verbose

–loadEngine为加载的engine文件路径,–exportProfile这个参数可以输出网络中每一层运行的平均时间以及占总时间的百分数,–verbose为打印日志,–warmUp为提前显卡预热。

三、进行推理

  我们已经得到了model.engine文件,最后一步我们要使用tensorrt的接口读取engine文件和图像文件进行推理得到最终的分类结果。
  由于我的环境现在无法安装pycuda和cuda的python包,所以最后推理的这一步等环境妥当,再补上。

总结

  本节我们介绍了如将使用trtexec工具和python代码通过onnx生成engine文件,并使用tensorrt的api接口调用engine文件进行推理。TensorRT推理手写数字分类总共三节,笼统地介绍了部署一个深度学习模型的流程,希望大家能有所收获。接下来如果有时间准备更新另一个工作:pytorch遇到不支持的算子,tensorrt遇到不支持的算子,onnx遇到不支持的算子该怎么办。

相关文章:

TensorRT推理手写数字分类(三)

系列文章目录 &#xff08;一&#xff09;使用pytorch搭建模型并训练 &#xff08;二&#xff09;将pth格式转为onnx格式 &#xff08;三&#xff09;onxx格式转为engine序列化文件并进行推理 文章目录 系列文章目录前言一、TensorRT是什么&#xff1f;二、如何通过onnx生成en…...

创建git项目并提交

1.创建仓库 2.点击创建 3复制gitee码云的HttpS连接 4 提交上传 打开项目并点击菜单栏上的【CVS】–》【Import into version control】–》【Create Git Repository】创建本地仓库 在打开的【Create Git Repository】对话框内选择本地仓库的位置&#xff0c;这里我选择…...

Android JNI修改Java对象的变量

在JNI中&#xff0c;本地代码&#xff08;C/C&#xff09;中修改了Java对象的变量&#xff0c;并且将其传递回Java端&#xff0c;那么Java端会看到变量的修改&#xff0c;尝试以下两种方式进行修改&#xff1a; 添加native方法 data class MyData(var key:Int,var value:String…...

VS+Qt 自定义Dialog

与QtCreator不同&#xff0c;刚用VS添加Qt Dialog界面有点懵&#xff0c;后整理了下&#xff1a; 1.右击项目&#xff0c;选择“添加-模块”&#xff0c;然后选择“Qt-Qt Widgets Class” 2.选择基类[1]QDialog,更改[2]ui文件名称&#xff0c;修改定义Dialog[3]对应类名&#…...

从零开始学习 Java:简单易懂的入门指南之时间类(十七)

时间类 第一章 Date类1.1 Date概述1.2 Date常用方法 第二章 SimpleDateFormat类2.1 构造方法2.2 格式规则2.3 常用方法2.4 练习1(初恋女友的出生日期)2.5 练习2(秒杀活动) 第三章 Calendar类3.1 概述3.2 常用方法3.3 get方法示例3.4 set方法示例&#xff1a;3.5 add方法示例&am…...

List 去重两种方式:stream(需要JDK1.8及以上)、HashSet

1、使用Stream 方法 使用JDK1.8及以上 /*** Java合并两个List并去掉重复项的几种做法* param args*/public static void main(String[] args) {String[] str1 {"1", "2", "3", "4", "5", "6"};List<String&…...

5.8.webrtc事件处理基础知识

在之前的课程中呢&#xff0c;我向你介绍了大量web rtc线程相关内容&#xff0c;今天呢&#xff0c;我们来看一下线程事件处理的基本知识。首先&#xff0c;我们要清楚啊&#xff0c;不同的平台处理事件的API是不一样的&#xff0c;这就如同我们当时创建线程是类似的&#xff0…...

无人机甚高频无线电中继通讯U-ATC118

简介 甚高频无线电中继通讯系统使用经过适航认证的机载电台连接数字网络传输模块&#xff0c;通过网络远程控制无缝实现无人机操作员与塔台直接语音通话。无人机操作员可以从地面控制站远程操作机载电台进行频率切换、静噪开关、PTT按钮&#xff0c;电台虚拟面板与真实面板布局…...

基于5G边缘网关的储能在线监测方案

近年以来&#xff0c;光伏、风力、水力发电等产业发展迅速&#xff0c;新能源在电力市场的占比持续增加&#xff0c;已经成为电力系统的重要组成部分。但由于光伏、风力、水力等发电方式存在天然的波动性&#xff0c;因此也需要配套储能、蓄能系统&#xff0c;保障新能源运行和…...

软件机器人助力基层网点实现存款数据自动化处理

银行基层网点需要及时了解存款变动情况&#xff0c;以便能够做出相应的安排和决策。过去&#xff0c;各级机构经办人员需要多次登录员工渠道系统&#xff0c;在不同的时间点查询并下载本级及下属机构的实时科目余额表&#xff0c;然后通过人工加工&#xff0c;才能得到存款新增…...

Win10怎么关闭自动更新?简单4招为你解决烦恼!

“买了一部win10的电脑&#xff0c;每次电脑自动更新都会导致我一些文件丢失或者系统错误。怎么才能关闭win10自动更新的功能呢&#xff1f;” Win10自动更新有时候会很影响我们使用电脑。在目前电脑用户中&#xff0c;使用win10系统的用户占大多数。因此很多朋友都会反映win10…...

【AWS】安装配置适用于 Eclipse 的 AWS 工具包

目录 0.环境 1.步骤 1&#xff09;安装Eclipse 2&#xff09;安装AWS工具包 ① 在这个路径下点开安装软件的界面 ② 点击【Add】打开添加窗口 ③ 输入aws的工具包地址 ④ 勾选需要的工具&#xff0c;点击【Next】 ⑤ 将要安装的工具&#xff0c;点击【Next】 ⑥ 选择接受…...

vue页面在table字段后加单位

<el-table-column label"售价" align"center" width"120"><template slot-scope"scope">{{ ${scope.row.price.toFixed(2)} 元 }}</template> </el-table-column><el-table-column label"金重" …...

RK3588平台开发系列讲解(AI 篇)RKNN-Toolkit2 模型的加载

文章目录 一、Caffe模型加载接口二、TensorFlow模型加载接口三、TensorFlowLite模型加载接口四、ONNX模型加载五、ONNX模型加载六、PyTorch模型加载接口沉淀、分享、成长,让自己和他人都能有所收获!😄 📢 RKNN-Toolkit2 目前支持 Caffe、TensorFlow、TensorFlowLite、ONN…...

Nexus2迁移升级到Nexus3

与 Nexus 2.x 相比&#xff0c;Nexus 3.x 为我们提供了更多实用的新特性。SonaType 官方建议我们&#xff0c;使用最新版本 Nexus 2.x 升级到最新版本 Nexus 3.x&#xff0c;并在 Nexus 升级兼容性 一文中为我们提供了各个版本 Nexus 升级到最新版本 Nexus 3.x 的流程&#xff…...

在线OJ平台项目

一、项目源码 Online_Judge yblhlk/Linux课程 - 码云 - 开源中国 (gitee.com) 二、所用技术与开发环境 1.所用技术: MVC架构模式 (模型&#xff0d;视图&#xff0d;控制器) 负载均衡系统设计 多进程、多线程编程 C面向对象编程 & C 11 & STL 标准库 C Boost 准标…...

go语言kafka入门

消息队列&#xff1a;一种基于异步通信的解耦机制&#xff0c;用于在应用程序或系统组件之间传递消息和数据 消息队列相关概念&#xff1a; 生产者&#xff08;Producer&#xff09;&#xff1a;生成并发送消息到消息队列中的应用程序或系统组件。 消费者&#xff08;Consumer&…...

自定义拖拽功能,上下拖拽改变盒子高度

核心在于监听鼠标的move来改变div的高度&#xff0c;抽成了组件 <template><div ref"container" class"drag"><z-tooltip v-if"isShowIcon" effect"dark" content"格式化" placement"top-start"&…...

JavaScript Es6_4笔记

JavaScript 进阶 文章目录 JavaScript 进阶深浅拷贝浅拷贝深拷贝递归实现深拷贝js库lodash里面cloneDeep内部实现了深拷贝JSON序列化 异常处理throwtry ... catchdebugger 处理this普通函数箭头函数改变this指向callapplybind 防抖节流 深浅拷贝 浅拷贝 首先浅拷贝和深拷贝只…...

Python“牵手”易贝(Ebay)商品列表数据,关键词搜索ebayAPI接口数据,ebayAPI接口申请指南

Ebay平台API接口是为开发电商类应用程序而设计的一套完整的、跨浏览器、跨平台的接口规范&#xff0c; EbayAPI接口是指通过编程的方式&#xff0c;让开发者能够通过HTTP协议直接访问Ebay平台的数据&#xff0c;包括商品信息、店铺信息、物流信息等&#xff0c;从而实现Ebay平…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...