基于秃鹰算法优化的BP神经网络(预测应用) - 附代码
基于秃鹰算法优化的BP神经网络(预测应用) - 附代码
文章目录
- 基于秃鹰算法优化的BP神经网络(预测应用) - 附代码
- 1.数据介绍
- 2.秃鹰优化BP神经网络
- 2.1 BP神经网络参数设置
- 2.2 秃鹰算法应用
- 4.测试结果:
- 5.Matlab代码
摘要:本文主要介绍如何用秃鹰算法优化BP神经网络并应用于预测。
1.数据介绍
本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据
2.秃鹰优化BP神经网络
2.1 BP神经网络参数设置
神经网络参数如下:
%% 构造网络结构
%创建神经网络
inputnum = 2; %inputnum 输入层节点数 2维特征
hiddennum = 10; %hiddennum 隐含层节点数
outputnum = 1; %outputnum 隐含层节点数
2.2 秃鹰算法应用
秃鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/113775430
秃鹰算法的参数设置为:
popsize = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
% inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
% hiddennum + outputnum 为权值的个数
dim = inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;% inputnum * hiddennum + hiddennum*outputnum维度
这里需要注意的是,神经网络的阈值数量计算方式如下:
本网络有2层:
第一层的阈值数量为:2*10 = 20; 即inputnum * hiddennum;
第一层的权值数量为:10;即hiddennum;
第二层的阈值数量为:10*1 = 10;即hiddenum * outputnum;
第二层权值数量为:1;即outputnum;
于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 41;
适应度函数值设定:
本文设置适应度函数如下:
f i t n e s s = a r g m i n ( m s e ( T r a i n D a t a E r r o r ) + m e s ( T e s t D a t a E r r o r ) ) fitness = argmin(mse(TrainDataError) + mes(TestDataError)) fitness=argmin(mse(TrainDataError)+mes(TestDataError))
其中TrainDataError,TestDataError分别为训练集和测试集的预测误差。mse为求取均方误差函数,适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。
4.测试结果:
从秃鹰算法的收敛曲线可以看到,整体误差是不断下降的,说明秃鹰算法起到了优化的作用:





5.Matlab代码
相关文章:
基于秃鹰算法优化的BP神经网络(预测应用) - 附代码
基于秃鹰算法优化的BP神经网络(预测应用) - 附代码 文章目录 基于秃鹰算法优化的BP神经网络(预测应用) - 附代码1.数据介绍2.秃鹰优化BP神经网络2.1 BP神经网络参数设置2.2 秃鹰算法应用 4.测试结果:5.Matlab代码 摘要…...
2.文章复现《热电联产系统在区域综合能源系统中的定容选址研究》(附matlab程序)
0.代码链接 1.简述 光热发电是大规模利用太阳能的新兴方式,其储热系 统能够调节光热电站的出力特性,进而缓解光热电站并网带来的火电机组调峰问题。合理配置光热电站储热容量,能够 有效降低火电机组调峰成本。该文提出一种光热电站储热容 量配…...
如何开启esxi主机的ssh远程连接
环境:esxi主机,说明:esxi主机默认ssh是不开启的,需要人工手动启动,也可以设置同esxi主机一起开机启动。 1、找到esxi主机,点击“配置”那里,再点击右边的属性,如图所示: …...
Android Studio实现解析HTML获取json,解析json图片URL,将URL存到list,进行瀑布流展示
目录 效果build.gradle(app)添加的依赖(用不上的可以不加)AndroidManifest.xml错误activity_main.xmlitem_image.xmlMainActivityImage适配器ImageModel 接收图片URL 效果 build.gradle(app)添加的依赖&…...
Centos7 交叉编译QT5.9.9源码 AArch64架构
环境准备 centos7 镜像 下载地址:http://mirrors.aliyun.com/centos/7.9.2009/isos/x86_64/ aarch64交叉编译链 下载地址:https://releases.linaro.org/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/ QT5.9.9源代码 下载地址࿱…...
爬虫逆向实战(二十)--某99网站登录
一、数据接口分析 主页地址:某99网站 1、抓包 通过抓包可以发现登录接口是AC_userlogin 2、判断是否有加密参数 请求参数是否加密? 通过查看“载荷”可以发现txtPassword和aws是加密参数 请求头是否加密? 无响应是否加密? 无…...
【C# 基础精讲】LINQ to Objects查询
LINQ to Objects是LINQ技术在C#中的一种应用,它专门用于对内存中的对象集合进行查询和操作。通过使用LINQ to Objects,您可以使用统一的语法来查询、过滤、排序、分组等操作各种.NET对象。本文将详细介绍LINQ to Objects的基本概念、常见的操作和示例&am…...
【力扣】209. 长度最小的子数组 <滑动窗口>
【力扣】209. 长度最小的子数组 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其和 ≥ target 的长度最小的连续子数组 [numsl, numsl1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。 示例 1&a…...
帮助中心应该用什么工具做?
在线帮助中心是指一个位于互联网上的资源平台,提供给用户获取产品或服务相关信息、解决问题以及获取技术支持的渠道。它通常包含了组织化的知识库、常见问题解答(FAQ)、操作指南、教程视频、用户手册等内容。在线帮助中心的主要目标是为用户提…...
前端面试:【跨域与安全】跨域问题及解决方案
嗨,亲爱的Web开发者!在构建现代Web应用时,跨域问题和安全性一直是不可忽视的挑战之一。本文将深入探讨跨域问题的背景以及解决方案,以确保你的应用既安全又能与其他域名的资源进行互操作。 1. 什么是跨域问题? 跨域问…...
【SQL中DDL DML DQL DCL所包含的命令】
SQL中DDL DML DQL DCL所包含的命令 关于DDL、DML、DQL、DCL的定义和适用范围如下: 数据定义语言(Data Definition Language,DDL): DDL用于创建、修改和删除数据库中的表、视图、索引等对象。它的主要命令包括CREATE、A…...
LeetCode150道面试经典题-- 二叉树的最大深度(简单)
1.题目 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 2.示例 3.思路 深度优先遍历 一个二叉树要查询到最大深度,可以将问题转为从根节点出发,查看左右子树的最大深度&am…...
【C++11】future和async等
C11的future和async等关键字 1.async和future的概念 std::async 和 std::future 是 C11 引入的标准库功能,用于实现异步编程,使得在多线程环境中更容易处理并行任务。它们可以帮助你在不同线程中执行函数,并且能够方便地获取函数的结果。 在…...
Linux 系统下 GDB 调试器的使用
文章目录 简介GDB 的介绍GDB 的使用 GDB 常用命令及示例查看相关操作断点相关操作运行相关操作变量相关操作分隔窗口操作 简介 GDB 的介绍 GDB 是 GNU 调试程序,是用来调试 C 和 C 程序的调试器。它可以让程序开发者在程序运行时观察程序的内部结构和内存的使用情况…...
个人首次使用UniAPP使用注意事项以及踩坑
个人首次使用UniAPP 使用注意事项以及踩坑 自我记录 持续更新 1.vscode 插件 uni-create-view 快速nui-app页面的 uni-helper uni-app代码提示的 uniapp小程序扩展 鼠标悬停查文档 Error Lens 行内提示报错 "types": ["dcloudio/types", "mini…...
VSCode 如何解决 scanf 的输入问题——Code is already running!
文章如何使用 VSCode 软件运行C代码中已经介绍了如何在 VSCode 软件中运行C代码,但最近在使用 scanf 想从键盘输入时,运行代码后显示“Code is already running!”,如下图所示,在输出窗口是无法通过键盘输入的。 解决办法如下&am…...
短视频seo源码矩阵系统开源---代码php分享
前言:短视频seo源码 短视频seo矩阵系统源码私有化部署 短视频seo源码 短视频seo矩阵系统源码私有化怎么部署? 首先我们来给大家普及一下什么是短视频seo矩阵系统?视频矩阵分为多平台矩阵与一个平台多账号矩阵,加上seo排名优化&…...
【docker】中文无法显示输入等问题解决方法
every blog every motto: You can do more than you think. csdn: https://blog.csdn.net/weixin_39190382?typeblog ID: 胡侃有料 0. 前言 docker 路径中文不显示,无法输入中文问题解决方法 1. 解决方法 1.1 临时解决 打开etc/profile文件,末尾添…...
leetcode 1035. 不相交的线
2023.8.25 本题可以转化为:求两数组的最长公共子序列。 进而可以用dp算法解决。 方法类似于这题最长公共子序列 。 代码如下: class Solution { public:int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {vector<…...
Hystrix: 服务降级
cloud是基础,eureka是服务注册和发现,consumer是消费者去消费provider里的东西,消费方式就是Feign和Ribbon,feign 接口消费,ribbon Rest消费 服务降级发生在客户端,客户端因为请求关闭的服务器࿰…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
深入理解Optional:处理空指针异常
1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
自然语言处理——文本分类
文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益(IG) 分类器设计贝叶斯理论:线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别, 有单标签多类别文本分类和多…...
TJCTF 2025
还以为是天津的。这个比较容易,虽然绕了点弯,可还是把CP AK了,不过我会的别人也会,还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...
raid存储技术
1. 存储技术概念 数据存储架构是对数据存储方式、存储设备及相关组件的组织和规划,涵盖存储系统的布局、数据存储策略等,它明确数据如何存储、管理与访问,为数据的安全、高效使用提供支撑。 由计算机中一组存储设备、控制部件和管理信息调度的…...
