stm32基于HAL库驱动外部SPI flash制作虚拟U盘
stm32基于HAL库驱动外部SPI flash制作虚拟U盘
- 📌参考文章:
https://xiaozhuanlan.com/topic/6058234791 - 🎞实现效果演示:

- 🔖上图中的读到的
FLASH_ID所指的是针对不同容量,所对应的ID。
//W25X/Q不同容量对应不同ID关系
W25Q80 ID 0XEF13
W25Q16 ID 0XEF14
W25Q32 ID 0XEF15
W25Q64 ID 0XEF16
W25Q128 ID 0XEF17
W25Q256 ID 0XEF18

- 🔖在电脑端,支持对虚拟出来的存储器进行读写操作。

- ✨如果设计成一块PCB,可以制作成一个微小容量的移动U盘。
- 🌿基于STM32F103,HAL库生成的代码,可以移植到任意支持USB接口的STM32单片机上使用。
- 🌿程序烧录后,通过PA11/PA12 USB初次连接电脑,会弹出提示格式化窗口。之后就可以使用,包括拷贝和创建文件到盘符内,保存数据后,拔插设备,数据不丢失。
stm32cumx配置
-
🌿stm32cumx使能对应的SPI接口

-
✨串口非必须,只是方便调试时查看读取是否支持。
-
🌿使能SPI接口:(尽量将SPI速度配置低一点,防止访问和写入出错)

-
🌿配置SPI CS(片选)引脚:

-
🌿使能USB外设:

-
🌿时钟配置为48MHz:


- 🌿使能调试接口

- 🌿勾选中间件:

- 🌿调整堆栈区大小:

🛠Keil工程修改
- 🌿导入驱动文件:
bsp_spi_flash.c和bsp_spi_flash.h到工程对应文件夹下:

- 🌿修改
usbd_storage_if.c文件内容:
/* USER CODE BEGIN INCLUDE */
#include "bsp_spi_flash.h" //将驱动头文件包含进来
/* USER CODE END INCLUDE */
//注释掉自动生成的以下3个宏定义
//#define STORAGE_LUN_NBR 1
//#define STORAGE_BLK_NBR 0x10000
//#define STORAGE_BLK_SIZ 0x200/* USER CODE BEGIN PRIVATE_DEFINES */
//重新定义以下3个宏
#define STORAGE_LUN_NBR 1
#define STORAGE_BLK_NBR 2048 //块数量:256*8扇区=8MByte
#define STORAGE_BLK_SIZ 4096 //每个扇区4096Byte
/* USER CODE END PRIVATE_DEFINES */
- ✨这里的
STORAGE_BLK_NBR宏代表,外部SPI FLASH 容量大小,2048代表为8MB,如果spi flash容量为16MB,那么这里就是4096.以此类推,4MB spi flash就是1024
- 📑补充以下函数内容:(
usbd_storage_if.c文件内)
int8_t STORAGE_Init_FS(uint8_t lun)
{/* USER CODE BEGIN 2 */W25QXX_Init();return (USBD_OK);/* USER CODE END 2 */
}int8_t STORAGE_GetCapacity_FS(uint8_t lun, uint32_t *block_num, uint16_t *block_size)
{/* USER CODE BEGIN 3 */*block_num = STORAGE_BLK_NBR;*block_size = STORAGE_BLK_SIZ;return (USBD_OK);/* USER CODE END 3 */
}int8_t STORAGE_IsReady_FS(uint8_t lun)
{/* USER CODE BEGIN 4 */u16 flash_ID;flash_ID =W25QXX_ReadID();printf("flash_ID:%d \r\n",flash_ID);//非必须,如需要调试,包含stdio.h头文件,启用串口return (USBD_OK);/* USER CODE END 4 */
}int8_t STORAGE_Read_FS(uint8_t lun, uint8_t *buf, uint32_t blk_addr, uint16_t blk_len)
{/* USER CODE BEGIN 6 */blk_addr += SPI_FLASH_START_SECTOR;SPI_FLASH_BufferRead(buf, blk_addr * SPI_FLASH_SECTOR_SIZE, blk_len * SPI_FLASH_SECTOR_SIZE);return (USBD_OK);/* USER CODE END 6 */
}
int8_t STORAGE_Write_FS(uint8_t lun, uint8_t *buf, uint32_t blk_addr, uint16_t blk_len)
{/* USER CODE BEGIN 7 */uint32_t write_addr;blk_addr +=SPI_FLASH_START_SECTOR;write_addr = blk_addr * SPI_FLASH_SECTOR_SIZE;SPI_FLASH_SectorErase(write_addr);SPI_FLASH_BufferWrite((uint8_t*)buf, write_addr, blk_len * SPI_FLASH_SECTOR_SIZE);return (USBD_OK);/* USER CODE END 7 */
}int8_t STORAGE_GetMaxLun_FS(void)
{/* USER CODE BEGIN 8 */return (STORAGE_LUN_NBR - 1);/* USER CODE END 8 */
}
- main.c文件
/* USER CODE BEGIN Includes */
#include "bsp_spi_flash.h"
#include "stdio.h"//用于调试串口输出
/* USER CODE END Includes */
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_SPI1_Init();MX_USB_DEVICE_Init();MX_USART1_UART_Init();/* USER CODE BEGIN 2 */W25QXX_Init();//初始化/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}
📝驱动文件
- 📗
bsp_spi_flash.h内容
#ifndef __SPI_FLASH_H
#define __SPI_FLASH_H#include "stm32f1xx.h"
#include "stm32f1xx_hal_spi.h"/* ???????? ----------------------------------------------------------------*/
#include "stm32f1xx_hal.h"typedef uint32_t u32;
typedef uint8_t u8;//
typedef uint16_t u16;#define SPI_FLASH_REBUILD 0 //1:???????????Flash??0??????????????Flash
#define SPI_FLASH_SECTOR_SIZE 4096 // ????Flash????????
#define SPI_FLASH_START_SECTOR 256*4 // ????Flash?????FatFS?????
#define SPI_FLASH_SECTOR_COUNT 256 // ????Flash?????FatFS???????????
//W25X/Q不同容量对应不同ID关系
//W25Q80 ID 0XEF13
//W25Q16 ID 0XEF14
//W25Q32 ID 0XEF15
//W25Q64 ID 0XEF16
//W25Q128 ID 0XEF17
//W25Q256 ID 0XEF18
//#define W25Q80 0XEF13
//#define W25Q16 0XEF14
//#define W25Q32 0XEF15
#define W25Q64 0XEF16
//#define W25Q128 0XEF17
//#define W25Q256 0XEF18
//#define sFLASH_ID 0XEF4017 //W25Q64
#define sFLASH_ID 0XEF16
extern SPI_HandleTypeDef hspi1;
extern u16 W25QXX_TYPE; //????W25QXX??????//#define W25QXX_CS PBout(12) //W25QXX片选引脚
#define W25QXX_CS_1 HAL_GPIO_WritePin(GPIOA,GPIO_PIN_4,GPIO_PIN_SET)
#define W25QXX_CS_0 HAL_GPIO_WritePin(GPIOA,GPIO_PIN_4,GPIO_PIN_RESET)#define W25X_WriteEnable 0x06
#define W25X_WriteDisable 0x04
#define W25X_ReadStatusReg1 0x05
#define W25X_ReadStatusReg2 0x35
#define W25X_ReadStatusReg3 0x15
#define W25X_WriteStatusReg1 0x01
#define W25X_WriteStatusReg2 0x31
#define W25X_WriteStatusReg3 0x11
#define W25X_ReadData 0x03
#define W25X_FastReadData 0x0B
#define W25X_FastReadDual 0x3B
#define W25X_PageProgram 0x02
#define W25X_BlockErase 0xD8
#define W25X_SectorErase 0x20
#define W25X_ChipErase 0xC7
#define W25X_PowerDown 0xB9
#define W25X_ReleasePowerDown 0xAB
#define W25X_DeviceID 0xAB
#define W25X_ManufactDeviceID 0x90
#define W25X_JedecDeviceID 0x9F
#define W25X_Enable4ByteAddr 0xB7
#define W25X_Exit4ByteAddr 0xE9void W25QXX_Init(void);
u16 W25QXX_ReadID(void); //???FLASH ID
void W25QXX_WAKEUP(void); //????
void SPI_FLASH_SectorErase(u32 SectorAddr);
void SPI_FLASH_BufferWrite(u8* pBuffer, u32 WriteAddr, u16 NumByteToWrite);
void SPI_FLASH_BufferRead(u8* pBuffer, u32 ReadAddr, u16 NumByteToRead);
void SPI_FLASH_PageWrite(u8* pBuffer, u32 WriteAddr, u16 NumByteToWrite);
#endif /* __SPI_FLASH_H */
- 📓
bsp_spi_flash.c内容
#include "bsp_spi_flash.h"
//需要重新添加代码
#include "stm32f1xx_hal_gpio.h"
#include "stdio.h"u16 W25QXX_TYPE = W25Q64; //设置SPI存储器型号extern SPI_HandleTypeDef hspi1;u8 W25QXX_ReadSR(u8 regno); //??????????
void W25QXX_4ByteAddr_Enable(void); //???4???????
void W25QXX_Write_SR(u8 regno,u8 sr); //?????????
void W25QXX_Write_Enable(void); //?????
void W25QXX_Write_Disable(void); //??????
void W25QXX_Write_NoCheck(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite);
void W25QXX_Read(u8* pBuffer,u32 ReadAddr,u16 NumByteToRead); //???flash
void W25QXX_Write(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite);//????flash
void W25QXX_Erase_Chip(void); //???????
void W25QXX_Erase_Sector(u32 Dst_Addr); //????????
void W25QXX_Wait_Busy(void); //???????
void W25QXX_PowerDown(void); //?????????//SPI1 读写一个字节
//TxData:要写入的字节
//返回值:读取到的字节
u8 SPI2_ReadWriteByte(u8 TxData)
{u8 Rxdata;HAL_SPI_TransmitReceive(&hspi1,&TxData,&Rxdata,1, 1000);return Rxdata; //返回收到的数据
}void SPI2_SetSpeed(u8 SPI_BaudRatePrescaler)
{assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_BaudRatePrescaler));//判断有效性__HAL_SPI_DISABLE(&hspi1); //关闭SPIhspi1.Instance->CR1&=0XFFC7; //位3-5清零,用来设置波特率hspi1.Instance->CR1|=SPI_BaudRatePrescaler;//设置SPI速度__HAL_SPI_ENABLE(&hspi1); //使能SPI}//初始化SPI FLASH的IO口
void W25QXX_Init(void)
{u8 temp;GPIO_InitTypeDef GPIO_Initure;// __HAL_RCC_GPIOB_CLK_ENABLE(); //使能GPIOB时钟__HAL_RCC_GPIOA_CLK_ENABLE(); //使能GPIOB时钟//PA4GPIO_Initure.Pin=GPIO_PIN_4; //PA4GPIO_Initure.Mode=GPIO_MODE_OUTPUT_PP; //推挽输出GPIO_Initure.Pull=GPIO_PULLUP; //上拉GPIO_Initure.Speed=GPIO_SPEED_FREQ_HIGH;//高速 HAL_GPIO_Init(GPIOA,&GPIO_Initure); //初始化W25QXX_CS_1; //SPI FLASH不选中
// SPI2_Init(); //初始化SPISPI2_SetSpeed(SPI_BAUDRATEPRESCALER_2); //设置为42M时钟,高速模式W25QXX_TYPE = W25QXX_ReadID(); //读取FLASH ID.printf("flash_ID:%d \r\n",W25QXX_TYPE);
// if(W25QXX_TYPE==W25Q64) //SPI FLASH为W25Q32
// {temp=W25QXX_ReadSR(3); //读取状态寄存器3,判断地址模式if((temp&0X01)==0) //如果不是4字节地址模式,则进入4字节地址模式{W25QXX_CS_0; //选中SPI2_ReadWriteByte(W25X_Enable4ByteAddr);//发送进入4字节地址模式指令 W25QXX_CS_1; //取消片选 }
// }
}
//读取W25QXX的状态寄存器,W25QXX一共有3个状态寄存器
//状态寄存器1:
//BIT7 6 5 4 3 2 1 0
//SPR RV TB BP2 BP1 BP0 WEL BUSY
//SPR:默认0,状态寄存器保护位,配合WP使用
//TB,BP2,BP1,BP0:FLASH区域写保护设置
//WEL:写使能锁定
//BUSY:忙标记位(1,忙;0,空闲)
//默认:0x00
//状态寄存器2:
//BIT7 6 5 4 3 2 1 0
//SUS CMP LB3 LB2 LB1 (R) QE SRP1
//状态寄存器3:
//BIT7 6 5 4 3 2 1 0
//HOLD/RST DRV1 DRV0 (R) (R) WPS ADP ADS
//regno:状态寄存器号,范:1~3
//返回值:状态寄存器值
u8 W25QXX_ReadSR(u8 regno)
{u8 byte=0,command=0;switch(regno){case 1:command=W25X_ReadStatusReg1; //读状态寄存器1指令break;case 2:command=W25X_ReadStatusReg2; //读状态寄存器2指令break;case 3:command=W25X_ReadStatusReg3; //读状态寄存器3指令break;default:command=W25X_ReadStatusReg1;break;}W25QXX_CS_0; //使能器件SPI2_ReadWriteByte(command); //发送读取状态寄存器命令byte=SPI2_ReadWriteByte(0Xff); //读取一个字节W25QXX_CS_1; //取消片选return byte;
}
//写W25QXX状态寄存器
void W25QXX_Write_SR(u8 regno,u8 sr)
{u8 command=0;switch(regno){case 1:command=W25X_WriteStatusReg1; //写状态寄存器1指令break;case 2:command=W25X_WriteStatusReg2; //写状态寄存器2指令break;case 3:command=W25X_WriteStatusReg3; //写状态寄存器3指令break;default:command=W25X_WriteStatusReg1;break;}W25QXX_CS_0; //使能器件SPI2_ReadWriteByte(command); //发送写取状态寄存器命令SPI2_ReadWriteByte(sr); //写入一个字节W25QXX_CS_1; //取消片选
}
//W25QXX写使能
//将WEL置位
void W25QXX_Write_Enable(void)
{W25QXX_CS_0; //使能器件SPI2_ReadWriteByte(W25X_WriteEnable); //发送写使能W25QXX_CS_1; //取消片选
}
//W25QXX写禁止
//将WEL清零
void W25QXX_Write_Disable(void)
{W25QXX_CS_0; //使能器件SPI2_ReadWriteByte(W25X_WriteDisable); //发送写禁止指令W25QXX_CS_1; //取消片选
}//读取芯片ID
//返回值如下:
//0XEF13,表示芯片型号为W25Q80
//0XEF14,表示芯片型号为W25Q16
//0XEF15,表示芯片型号为W25Q32
//0XEF16,表示芯片型号为W25Q64
//0XEF17,表示芯片型号为W25Q128
//0XEF18,表示芯片型号为W25Q256
u16 W25QXX_ReadID(void)
{u16 Temp = 0;W25QXX_CS_0;SPI2_ReadWriteByte(0x90);//发送读取ID命令SPI2_ReadWriteByte(0x00);SPI2_ReadWriteByte(0x00);SPI2_ReadWriteByte(0x00);Temp|=SPI2_ReadWriteByte(0xFF)<<8;Temp|=SPI2_ReadWriteByte(0xFF);W25QXX_CS_1;return Temp;
}
//读取SPI FLASH
//在指定地址开始读取指定长度的数据
//pBuffer:数据存储区
//ReadAddr:开始读取的地址(24bit)
//NumByteToRead:要读取的字节数(最大65535)
void W25QXX_Read(u8* pBuffer,u32 ReadAddr,u16 NumByteToRead)
{u16 i;W25QXX_CS_0; //使能器件SPI2_ReadWriteByte(W25X_ReadData); //发送读取命令
// if(W25QXX_TYPE == W25Q256) //如果是W25Q256的话地址为4字节的,要发送最高8位
// {
// SPI2_ReadWriteByte((u8)((ReadAddr)>>24));
// }SPI2_ReadWriteByte((u8)((ReadAddr)>>16)); //发送24bit地址SPI2_ReadWriteByte((u8)((ReadAddr)>>8));SPI2_ReadWriteByte((u8)ReadAddr);for(i=0;i<NumByteToRead;i++){pBuffer[i]=SPI2_ReadWriteByte(0XFF); //循环读数}W25QXX_CS_1;
}
/**
* @brief 读取FLASH数据
* @param pBuffer,存储读出数据的指针
* @param ReadAddr,读取地址
* @param NumByteToRead,读取数据长度
* @retval 无
*/
void SPI_FLASH_BufferRead(u8* pBuffer, u32 ReadAddr, u16 NumByteToRead)
{/* 选择FLASH: CS低电平 */W25QXX_CS_0;/* 发送 读 指令 */SPI2_ReadWriteByte(W25X_ReadData);/* 发送 读 地址高位 */SPI2_ReadWriteByte((ReadAddr & 0xFF0000) >> 16);/* 发送 读 地址中位 */SPI2_ReadWriteByte((ReadAddr& 0xFF00) >> 8);/* 发送 读 地址低位 */SPI2_ReadWriteByte(ReadAddr & 0xFF);/* 读取数据 */while (NumByteToRead--) /* while there is data to be read */{/* 读取一个字节*/*pBuffer = SPI2_ReadWriteByte(0xFF);/* 指向下一个字节缓冲区 */pBuffer++;}/* 停止信号 FLASH: CS 高电平 */W25QXX_CS_1;
}
#define WIP_Flag 0x01/*** @brief 等待WIP(BUSY)标志被置0,即等待到FLASH内部数据写入完毕* @param none* @retval none*/
void SPI_FLASH_WaitForWriteEnd(void)
{u8 FLASH_Status = 0;/* 选择 FLASH: CS 低 */W25QXX_CS_0;/* 发送 读状态寄存器 命令 */SPI2_ReadWriteByte(W25X_ReadStatusReg1);/* 若FLASH忙碌,则等待 */do{/* 读取FLASH芯片的状态寄存器 */FLASH_Status = SPI2_ReadWriteByte(0xFF);}while ((FLASH_Status & WIP_Flag) == SET); /* 正在写入标志 *//* 停止信号 FLASH: CS 高 */W25QXX_CS_1;
}/*** @brief 擦除FLASH扇区* @param SectorAddr:要擦除的扇区地址* @retval 无*/
void SPI_FLASH_SectorErase(u32 SectorAddr)
{/* 发送FLASH写使能命令 */W25QXX_Write_Enable();SPI_FLASH_WaitForWriteEnd();/* 擦除扇区 *//* 选择FLASH: CS低电平 */W25QXX_CS_0;/* 发送扇区擦除指令*/SPI2_ReadWriteByte(W25X_SectorErase);/*发送擦除扇区地址的高位*/SPI2_ReadWriteByte((u8)((SectorAddr)>>16)); //发送24bit地址SPI2_ReadWriteByte((u8)((SectorAddr)>>8));/* 发送擦除扇区地址的低位 */SPI2_ReadWriteByte(SectorAddr & 0xFF);/* 停止信号 FLASH: CS 高电平 */W25QXX_CS_1;/* 等待擦除完毕*/SPI_FLASH_WaitForWriteEnd();
}
/* WIP(busy)标志,FLASH内部正在写入 */#define SPI_FLASH_PageSize 256
#define SPI_FLASH_PerWritePageSize 256
/*** @brief 对FLASH按页写入数据,调用本函数写入数据前需要先擦除扇区* @param pBuffer,要写入数据的指针* @param WriteAddr,写入地址* @param NumByteToWrite,写入数据长度,必须小于等于SPI_FLASH_PerWritePageSize* @retval 无*/
void SPI_FLASH_PageWrite(u8* pBuffer, u32 WriteAddr, u16 NumByteToWrite)
{/* 发送FLASH写使能命令 */W25QXX_Write_Enable();/* 选择FLASH: CS低电平 */W25QXX_CS_0;/* 写页写指令*/SPI2_ReadWriteByte(W25X_PageProgram);/*发送写地址的高位*/SPI2_ReadWriteByte((WriteAddr & 0xFF0000) >> 16);/*发送写地址的中位*/SPI2_ReadWriteByte((WriteAddr & 0xFF00) >> 8);/*发送写地址的低位*/SPI2_ReadWriteByte(WriteAddr & 0xFF);if(NumByteToWrite > SPI_FLASH_PageSize){NumByteToWrite = SPI_FLASH_PerWritePageSize;//FLASH_ERROR("SPI_FLASH_PageWrite too large!");}/* 写入数据*/while (NumByteToWrite--){/* 发送当前要写入的字节数据 */SPI2_ReadWriteByte(*pBuffer);/* 指向下一字节数据 */pBuffer++;}/* 停止信号 FLASH: CS 高电平 */W25QXX_CS_1;/* 等待写入完毕*/SPI_FLASH_WaitForWriteEnd();
}//SPI在一页(0~65535)内写入少于256个字节的数据
//在指定地址开始写入最大256字节的数据
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(24bit)
//NumByteToWrite:要写入的字节数(最大256),该数不应该超过该页的剩余字节数!!!
void W25QXX_Write_Page(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite)
{u16 i;W25QXX_Write_Enable(); //SET WELW25QXX_CS_0; //使能器件SPI2_ReadWriteByte(W25X_PageProgram); //发送写页命令
// if(W25QXX_TYPE==W25Q256) //如果是W25Q256的话地址为4字节的,要发送最高8位
// {
// SPI2_ReadWriteByte((u8)((WriteAddr)>>24));
// }SPI2_ReadWriteByte((u8)((WriteAddr)>>16)); //发送24bit地址SPI2_ReadWriteByte((u8)((WriteAddr)>>8));SPI2_ReadWriteByte((u8)WriteAddr);for(i=0;i<NumByteToWrite;i++)SPI2_ReadWriteByte(pBuffer[i]);//循环写数W25QXX_CS_1; //取消片选SPI_FLASH_WaitForWriteEnd(); //等待写入结束
}/*** @brief 对FLASH写入数据,调用本函数写入数据前需要先擦除扇区* @param pBuffer,要写入数据的指针* @param WriteAddr,写入地址* @param NumByteToWrite,写入数据长度* @retval 无*/
void SPI_FLASH_BufferWrite(u8* pBuffer, u32 WriteAddr, u16 NumByteToWrite)
{u8 NumOfPage = 0, NumOfSingle = 0, Addr = 0, count = 0, temp = 0;/*mod运算求余,若writeAddr是SPI_FLASH_PageSize整数倍,运算结果Addr值为0*/Addr = WriteAddr % SPI_FLASH_PageSize;/*差count个数据值,刚好可以对齐到页地址*/count = SPI_FLASH_PageSize - Addr;/*计算出要写多少整数页*/NumOfPage = NumByteToWrite / SPI_FLASH_PageSize;/*mod运算求余,计算出剩余不满一页的字节数*/NumOfSingle = NumByteToWrite % SPI_FLASH_PageSize;/* Addr=0,则WriteAddr 刚好按页对齐 aligned */if (Addr == 0){/* NumByteToWrite < SPI_FLASH_PageSize */if (NumOfPage == 0){SPI_FLASH_PageWrite(pBuffer, WriteAddr, NumByteToWrite);}else /* NumByteToWrite > SPI_FLASH_PageSize */{/*先把整数页都写了*/while (NumOfPage--){SPI_FLASH_PageWrite(pBuffer, WriteAddr, SPI_FLASH_PageSize);WriteAddr += SPI_FLASH_PageSize;pBuffer += SPI_FLASH_PageSize;}/*若有多余的不满一页的数据,把它写完*/SPI_FLASH_PageWrite(pBuffer, WriteAddr, NumOfSingle);}}/* 若地址与 SPI_FLASH_PageSize 不对齐 */else{/* NumByteToWrite < SPI_FLASH_PageSize */if (NumOfPage == 0){/*当前页剩余的count个位置比NumOfSingle小,一页写不完*/if (NumOfSingle > count){temp = NumOfSingle - count;/*先写满当前页*/SPI_FLASH_PageWrite(pBuffer, WriteAddr, count);WriteAddr += count;pBuffer += count;/*再写剩余的数据*/SPI_FLASH_PageWrite(pBuffer, WriteAddr, temp);}else /*当前页剩余的count个位置能写完NumOfSingle个数据*/{SPI_FLASH_PageWrite(pBuffer, WriteAddr, NumByteToWrite);}}else /* NumByteToWrite > SPI_FLASH_PageSize */{/*地址不对齐多出的count分开处理,不加入这个运算*/NumByteToWrite -= count;NumOfPage = NumByteToWrite / SPI_FLASH_PageSize;NumOfSingle = NumByteToWrite % SPI_FLASH_PageSize;/* 先写完count个数据,为的是让下一次要写的地址对齐 */SPI_FLASH_PageWrite(pBuffer, WriteAddr, count);/* 接下来就重复地址对齐的情况 */WriteAddr += count;pBuffer += count;/*把整数页都写了*/while (NumOfPage--){SPI_FLASH_PageWrite(pBuffer, WriteAddr, SPI_FLASH_PageSize);WriteAddr += SPI_FLASH_PageSize;pBuffer += SPI_FLASH_PageSize;}/*若有多余的不满一页的数据,把它写完*/if (NumOfSingle != 0){SPI_FLASH_PageWrite(pBuffer, WriteAddr, NumOfSingle);}}}
}//无检验写SPI FLASH
//必须确保所写的地址范围内的数据全部为0XFF,否则在非0XFF处写入的数据将失败!
//具有自动换页功能
//在指定地址开始写入指定长度的数据,但是要确保地址不越界!
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(24bit)
//NumByteToWrite:要写入的字节数(最大65535)
//CHECK OK
void W25QXX_Write_NoCheck(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite)
{u16 pageremain;pageremain=256-WriteAddr%256; //单页剩余的字节数if(NumByteToWrite<=pageremain)pageremain=NumByteToWrite;//不大于256个字节while(1){W25QXX_Write_Page(pBuffer,WriteAddr,pageremain);if(NumByteToWrite==pageremain)break;//写入结束了else //NumByteToWrite>pageremain{pBuffer+=pageremain;WriteAddr+=pageremain;NumByteToWrite-=pageremain; //减去已经写入了的字节数if(NumByteToWrite>256)pageremain=256; //一次可以写入256个字节else pageremain=NumByteToWrite; //不够256个字节了}};
}
//写SPI FLASH
//在指定地址开始写入指定长度的数据
//该函数带擦除操作!
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(24bit)
//NumByteToWrite:要写入的字节数(最大65535)
u8 W25QXX_BUFFER[4096];
void W25QXX_Write(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite)
{u32 secpos;u16 secoff;u16 secremain;u16 i;u8 * W25QXX_BUF;W25QXX_BUF=W25QXX_BUFFER;secpos=WriteAddr/4096;//扇区地址secoff=WriteAddr%4096;//在扇区内的偏移secremain=4096-secoff;//扇区剩余空间大小//printf("ad:%X,nb:%X\r\n",WriteAddr,NumByteToWrite);//测试用if(NumByteToWrite<=secremain)secremain=NumByteToWrite;//不大于4096个字节while(1){W25QXX_Read(W25QXX_BUF,secpos*4096,4096);//读出整个扇区的内容for(i=0;i<secremain;i++)//校验数据{if(W25QXX_BUF[secoff+i]!=0XFF)break;//需要擦除}if(i<secremain)//需要擦除{W25QXX_Erase_Sector(secpos);//擦除这个扇区for(i=0;i<secremain;i++) //复制{W25QXX_BUF[i+secoff]=pBuffer[i];}W25QXX_Write_NoCheck(W25QXX_BUF,secpos*4096,4096);//写入整个扇区}else W25QXX_Write_NoCheck(pBuffer,WriteAddr,secremain);//写已经擦除了的,直接写入扇区剩余区间.if(NumByteToWrite==secremain)break;//写入结束了else//写入未结束{secpos++;//扇区地址增1secoff=0;//偏移位置为0pBuffer+=secremain; //指针偏移WriteAddr+=secremain;//写地址偏移NumByteToWrite-=secremain; //字节数递减if(NumByteToWrite>4096)secremain=4096; //下一个扇区还是写不完else secremain=NumByteToWrite; //下一个扇区可以写完了}};
}
//擦除整个芯片
//等待时间超长...
void W25QXX_Erase_Chip(void)
{W25QXX_Write_Enable(); //SET WELW25QXX_Wait_Busy();W25QXX_CS_0; //使能器件SPI2_ReadWriteByte(W25X_ChipErase); //发送片擦除命令W25QXX_CS_1; //取消片选W25QXX_Wait_Busy(); //等待芯片擦除结束
}
//擦除一个扇区
//Dst_Addr:扇区地址 根据实际容量设置
//擦除一个扇区的最少时间:150ms
void W25QXX_Erase_Sector(u32 Dst_Addr)
{//监视falsh擦除情况,测试用//printf("fe:%x\r\n",Dst_Addr);Dst_Addr*=4096;W25QXX_Write_Enable(); //SET WELW25QXX_Wait_Busy();W25QXX_CS_0; //使能器件SPI2_ReadWriteByte(W25X_SectorErase); //发送扇区擦除指令if(W25QXX_TYPE==W25Q64) //如果是W25Q256的话地址为4字节的,要发送最高8位{SPI2_ReadWriteByte((u8)((Dst_Addr)>>24));}SPI2_ReadWriteByte((u8)((Dst_Addr)>>16)); //发送24bit地址SPI2_ReadWriteByte((u8)((Dst_Addr)>>8));SPI2_ReadWriteByte((u8)Dst_Addr);W25QXX_CS_1; //取消片选W25QXX_Wait_Busy(); //等待擦除完成
}
//等待空闲
void W25QXX_Wait_Busy(void)
{while((W25QXX_ReadSR(1)&0x01)==0x01); // 等待BUSY位清空
}
//进入掉电模式
void W25QXX_PowerDown(void)
{W25QXX_CS_0; //使能器件SPI2_ReadWriteByte(W25X_PowerDown); //发送掉电命令W25QXX_CS_1; //取消片选//delay_us(3); //等待TPD
}
//唤醒
void W25QXX_WAKEUP(void)
{W25QXX_CS_0; //使能器件SPI2_ReadWriteByte(W25X_ReleasePowerDown); // send W25X_PowerDown command 0xABW25QXX_CS_1; //取消片选//delay_us(3); //等待TRES1
}
📚工程源码
链接:https://pan.baidu.com/s/164MW7mOR8fnaHZUC0dt7SQ
提取码:0nei
相关文章:
stm32基于HAL库驱动外部SPI flash制作虚拟U盘
stm32基于HAL库驱动外部SPI flash制作虚拟U盘 📌参考文章:https://xiaozhuanlan.com/topic/6058234791🎞实现效果演示: 🔖上图中的读到的FLASH_ID所指的是针对不同容量,所对应的ID。 //W25X/Q不同容量对应…...
vue3-ts- element-plus新增组件-过滤
新增组件-所有值为空时过滤 <el-form-item label"家庭成员"><divclass"username-box"v-for"(item, index) in form.namelist":key"index"><div>姓名:<el-input v-model"item.name" placeho…...
PostgreSQL SQL优化
Oracle SQL优化 一、在字段里面写的子查询放到from后面,用left join,会大幅提高SQL查询速度。 一、在字段里面写的子查询放到from后面,用left join,会大幅提高SQL查询速度。...
debian12网络静态ip配置-OSSIM 安全漏洞扫描系统平台
本配置适合于服务器上的静态ip配置,该方法简单可靠。 1 临时配置 ifconfig eth0 192.168.1.97 netmask 255.255.255.0 broadcast 192.168.1.255 ip route add default via 192.168.1.1 2 主要的网络配置文件 /etc/network/interfaces /etc/resolv.conf 3 配置…...
微软 Visual Studio 现已内置 Markdown 编辑器,可直接修改预览 .md 文件
Visual Studio Code V1.66.0 中文版 大小:75.30 MB类别:文字处理 本地下载 Markdown 是一种轻量级标记语言,当开发者想要格式化代码但又不想牺牲易读性时,Markdown 是一个很好的解决方案,比如 GitHub 就使用 Markdo…...
阿里云通义千问开源第二波!大规模视觉语言模型Qwen-VL上线魔搭社区
通义千问开源第二波!8月25日消息,阿里云推出大规模视觉语言模型Qwen-VL,一步到位、直接开源。Qwen-VL以通义千问70亿参数模型Qwen-7B为基座语言模型研发,支持图文输入,具备多模态信息理解能力。在主流的多模态任务评测…...
在腾讯云服务器OpenCLoudOS系统中安装Jenkins(有图详解)
Jenkins介绍 Jenkins是一个开源软件项目,是基于java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能。 将项目代码的svn地址配置在Jenkins,就可以直接在Je…...
《vue3实战》在created生命周期中运用slice()方法结合element plus组件实现电影评价系统的分页
目录 前言 电影评价系统的分页是什么?它具体的作用体现在哪些方面? 一、slice的含义、语法和作用以及created的作用 slice是什么?slice有什么语法?slice的作用体现在哪些方面? created生命周期的作用:…...
NO.04 MyBatis的各种查询功能
目录 1、查询一个实体类对象 2、查询一个List集合 3、查询单个数据 5、查询多条数据并存储在Map集合中 5.1 方法一:将数据存储在map集合中,再将map集合存储在List集合中 5.2 方法二:将数据存储在map集合中 6、MyBatis中为Java中常用的…...
Spring循环依赖
一、Autowired依赖注入的缓存 二、Resource依赖注入过程 三、循环依赖 singletonObjects:缓存经过了完整生命周期的beanearlySingletonObjects:缓存未经过完整生命周期的bean,如果某个bean出现了循环依赖,就会提前把这个暂时未经过…...
docker以distribution和registry管理个人镜像仓库
目录 一.distribution 1.扩展源下载docker-distribution并启动 2.打标签并认证安全仓库 3.推送到私人仓库 4.拉取镜像 二.registry 1.拉取registry的镜像 2.运行容器并打标签 3.认证安全仓库 4.推送到私人仓库 5.拉取镜像 一.distribution 1.扩展源下载docker-dist…...
2023京东酒类市场数据分析(京东数据开放平台)
根据鲸参谋平台的数据统计,今年7月份京东平台酒类环比集体下滑,接下来我们一起来看白酒、啤酒、葡萄酒的详情数据。 首先来看白酒市场。 鲸参谋数据显示,7月份京东平台白酒的销量为210万,环比下滑约49%;销售额将近19…...
Android中的APK打包与安全
aapt2命令行实现apk打包 apk文件结构 classes.dex:Dex,即Android Dalvik执行文件 AndroidManifest.xml:工程中AndroidManifest.xml编译后得到的二进制xml文件 META-INF:主要保存各个资源文件的SHA1 hash值,用于校验…...
HTTPS单向认证与双向认证
HTTPS单向认证与双向认证 HTTPSCA证书单向认证双向认证 HTTPS Https就是HTTPSSL/TSL的简称。 SSL(Secure Socket Layer 安全套接层)是TCP/IP协议中基于HTTP之下TCP之上的一个可选协议层。 起初HTTP在传输数据时使用的是明文,传输过程中并不安全。网景(N…...
(七) ElasticSearch 分词器
1.分词器 分词器是 Elasticsearch 用于将文本拆分为单词(词项)的组件,以便于搜索和索引。以下是一些关于 Elasticsearch 分词器的常见问题和相关操作的介绍: 1)什么是分词器? 分词器是 Elasticsearch 中…...
足球- EDA的历史数据分析并可视化
足球- EDA的历史数据分析并可视化 背景数据介绍探索数据时需要遵循的一些方向:数据处理导入库数据探索 数据可视化赛事分析主客场比分相关性分析时间序列分析 总结 背景 该数据集包括从1872年第一场正式比赛到2023年的44,341场国际足球比赛的结果。比赛范围从FIFA世…...
用正则处理Unicode 编码的文本
Unicode(中文:万国码、国际码、统一码、单一码)是计算机科学领域里的一项业界标准。它对世界上大部分的文字进行了整理、编码。Unicode 使计算机呈现和处理文字变得简单。 现在的 Unicode 字符分为 17 组编排,每组为一个平面&…...
【分布式技术专题】「OSS中间件系列」从0到1的介绍一下开源对象存储MinIO技术架构
MinIO背景介绍 MinIO创始者是Anand Babu Periasamy, Harshavardhana(戒日王)等人, Anand是GlusterFS的初始开发者、Gluster公司的创始人与CTO,Harshavardhana曾经是GlusterFS的开发人员,直到2011年红帽收购了Gluster公…...
生成式人工智能的潜在有害影响与未来之路(三)
产品责任法的潜在适用 背景和风险 产品责任是整个二十世纪发展起来的一个法律领域,旨在应对大规模生产的产品可能对社会造成的伤害。这一法律领域侧重于三个主要危害:设计缺陷的产品、制造缺陷的产品和营销缺陷的产品。产品责任法的特点有两个要素&…...
【2023钉钉杯复赛】A题 智能手机用户监测数据分析 Python代码分析
【2023钉钉杯复赛】A题 智能手机用户监测数据分析 Python代码分析 1 题目 一、问题背景 近年来,随着智能手机的产生,发展到爆炸式的普及增长,不仅推动了中 国智能手机市场的发展和扩大,还快速的促进手机软件的开发。近年中国智能…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...

