AIGC ChatGPT 按年份进行动态选择的动态图表
动态可视化分析的好处与优势:
1. 提高信息理解性:可视化分析使得大量复杂的数据变得易于理解,通过图表、颜色、形状、尺寸等方式,能够直观地表现不同的数据关系和模式。
2. 加快决策速度:数据可视化可以帮助用户更快地分析信息,从而做出更快的决策。它使得数据分析和决策过程更加高效。
3. 发现潜在趋势和模式:可视化可以帮助用户更容易地识别数据中的模式、趋势和关联,从而提供有价值的洞察,这在文本或数字格式的数据中可能会被忽视。
4. 提高记忆保留:研究表明,人类对视觉信息的记忆更为深刻,通过可视化展示的信息更容易被用户记住。
5. 更好地交流和解释:可视化可以帮助更好地解释和传递信息,使得数据的解释和理解更容易被接受。
6. 增强数据的吸引力:好的数据可视化不仅能提供有价值的信息,也可以提高数据的吸引力,使得用户更愿意去关注和理解这些数据。
如下列动态图表显示。

可以进行按年份动态选择。
这个动态图表使Echarts,HTML,JS技术来完成。
代码部分我们可以让AIGC,ChatGPT,人工智能来帮我们实现。
指令如下:请使用HTML与JS,Echarts,来实现一个动态条形图实例,做一个可以下拉选择的年份,X轴显示10个不同的商品名称,数据可以随机生成,图表按年份进行动态筛选滚动显示,X轴字体大小为18号字体加粗字体颜色为黑色,图表显示数据标签 18号字体,标题居中显示,每个条形都使用不同的颜色进行表示 字体颜色为黑色。

完整代码:
<!DOCTYPE html>
<html>
<head><meta charset="utf-8"><title>ECharts</title><script src="https://cdn.bootcdn.net/ajax/libs/echarts/5.1.2/echarts.min.js"></script>
</head>
<body><select id="year" onchange="changeData()"><option value="2018">2020</option><option value="2019">2021</option><option value="2020">2022</option><option value="2021">2023</option></select><div id="main" style="width: 1200px;height:600px;"></div><script type="text/javascript">var myChart = echarts.init(document.getElementById('main'));// 随机数据function randomData() {return Math.round(Math.random()*1000);}var option = {title: {text: '年度商品销售统计',left: 'center',textStyle:{color:'black',fontSize:18}},tooltip: {},xAxis: {data: ['商品1','商品2','商品3','商品4','商品5','商品6','商品7','商品8','商品9','商品10'],axisLabel:{interval:0,fontSize:18,fontWeight:'bold',color: 'black'}},yAxis: {},series: [{name: '销售量',type: 'bar',data: [randomData(), randomData(), randomData(), randomData(), randomData(), randomData(), randomData(), randomData(), randomData(), randomData()],itemStyle: {color: function(params) {var colorList = ['#C1232B','#B5C334','#FCCE10','#E87C25','#27727B','#FE8463','#9BCA63','#FAD860','#F3A43B','#60C0DD'];return colorList[params.dataIndex]}},label: {show: true,position: 'top',color: 'black',fontSize: 18}}]};myChart.setOption(option);function changeData() {option.series[0].data = [randomData(), randomData(), randomData(), randomData(), randomData(), randomData(), randomData(), randomData(), randomData(), randomData()];myChart.setOption(option);}</script>
</body>
</html>
将上面的代码保存为HTMl文件打开即可。

更多AIGC,ChatGPT,数据库,可视化,数据仓库,职场办公内容在。
AIGC ChatGPT 办公实战 http://t.csdn.cn/zBytu

上述所有内容在 http://t.csdn.cn/zBytu
上述所有内容在 http://t.csdn.cn/zBytu
上述所有内容在 http://t.csdn.cn/zBytu
相关文章:
AIGC ChatGPT 按年份进行动态选择的动态图表
动态可视化分析的好处与优势: 1. 提高信息理解性:可视化分析使得大量复杂的数据变得易于理解,通过图表、颜色、形状、尺寸等方式,能够直观地表现不同的数据关系和模式。 2. 加快决策速度:数据可视化可以帮助用户更快…...
分布式—雪花算法生成ID
一、简介 1、雪花算法的组成: 由64个Bit(比特)位组成的long类型的数字 0 | 0000000000 0000000000 0000000000 000000000 | 00000 | 00000 | 000000000000 1个bit:符号位,始终为0。 41个bit:时间戳,精确到毫秒级别&a…...
Python语言实现React框架
迷途小书童的 Note 读完需要 6分钟 速读仅需 2 分钟 1 reactpy 介绍 reactpy 是一个用 Python 语言实现的 ReactJS 框架。它可以让我们使用 Python 的方式来编写 React 的组件,构建用户界面。 reactpy 的目标是想要将 React 的优秀特性带入 Python 领域,…...
Netty入门学习和技术实践
Netty入门学习和技术实践 Netty1.Netty简介2.IO模型3.Netty框架介绍4. Netty实战项目学习5. Netty实际应用场景6.扩展 Netty 1.Netty简介 Netty是由JBOSS提供的一个java开源框架,现为 Github上的独立项目。Netty提供异步的、事件驱动的网络应用程序框架和工具&…...
MySQL详细安装与配置
免安装版的Mysql MySQL关是一种关系数据库管理系统,所使用的 SQL 语言是用于访问数据库的最常用的 标准化语言,其特点为体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,在 Web 应用方面 MySQL 是最好的 RDBMS(Relation…...
裸露土堆识别算法
裸露土堆识别算法首先利用图像处理技术,提取出图像中的土堆区域。裸露土堆识别算法首通过计算土堆中被绿色防尘网覆盖的比例,判断土堆是否裸露。若超过40%的土堆没有被绿色防尘网覆盖,则视为裸露土堆。当我们谈起计算机视觉时,首先…...
说说你对Redux的理解?其工作原理?
文章目录 redux?工作原理如何使用后言 redux? React是用于构建用户界面的,帮助我们解决渲染DOM的过程 而在整个应用中会存在很多个组件,每个组件的state是由自身进行管理,包括组件定义自身的state、组件之间的通信通…...
《基于 Vue 组件库 的 Webpack5 配置》7.路径别名 resolve.alias 和 性能 performance
路径别名 resolve.alias const path require(path);module.exports {resolve: {alias: {"": path.resolve(__dirname, "./src/"),"assets": path.resolve(__dirname, "./src/assets/"),"mixins": path.resolve(__dirname,…...
基于PaddleOCR2.7.0发布WebRest服务测试案例
基于PaddleOCR2.7.0发布WebRest服务测试案例 #WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. #警告:这是一个开发服务器。不要在生产部署中使用它。请改用生产WSGI服务器。 输出结果…...
Solidity 合约安全,常见漏洞 (下篇)
Solidity 合约安全,常见漏洞 (下篇) Solidity 合约安全,常见漏洞 (上篇) 不安全的随机数 目前不可能用区块链上的单一交易安全地产生随机数。区块链需要是完全确定的,否则分布式节点将无法达…...
nodejs根据pdf模板填入中文数据并生成新的pdf文件
导入pdf-lib库和fontkit npm install pdf-lib fs npm install pdf-lib/fontkit 具体代码 const { PDFDocument, StandardFonts } require(pdf-lib); const fs require(fs); const fontkit require(pdf-lib/fontkit) let pdfDoc let font async function fillPdfForm(temp…...
UE4与pycharm联合仿真的调试问题及一些仿真经验
文章目录 ue4与pycharm联合仿真的调试问题前言ue4端的debug过程pycharm端 一些仿真经验小结 ue4与pycharm联合仿真的调试问题 前言 因为在实验中我需要用到py代码输出控制信息给到ue4中,并且希望看到py端和ue端分别在运行过程中的输出以及debug调试。所以…...
【数据分析】波士顿矩阵
波士顿矩阵是一种用于分析市场定位和企业发展战略的管理工具。由美国波士顿咨询集团(Boston Consulting Group)于1970年提出,并以该集团命名。 波士顿矩阵主要基于产品生命周期和市场份额两个维度,将企业的产品或业务分为四个象限…...
sizeof和strlen的对比
文章目录 🚩前言🚩sizeof🚩strlen🚩sizeof和strlen对比 🚩前言 很多小白在学习中,经常将sizeof和strlen弄混了。本篇文章,小编讲解一下sizeof和strlen的区别。🤷♂️ 🚩…...
Flutter系列文章-Flutter 插件开发
在本篇文章中,我们将学习如何开发 Flutter 插件,实现 Flutter 与原生平台的交互。我们将详细介绍插件的开发过程,包括如何创建插件项目、实现方法通信、处理异步任务等。最后,我们还将演示如何将插件打包并发布到 Flutter 社区。 …...
基于SpringBoot实现MySQL与Redis的数据最终一致性
问题场景 在并发场景下,MySQL和Redis之间的数据不一致性可能成为一个突出问题。这种不一致性可能由网络延迟、并发写入冲突以及异常情况处理等因素引起,导致MySQL和Redis中的数据在某些时间点不同步或出现不一致的情况。数据一致性问题的级别可以分为三…...
mysql与oracle数据库备份
mysql 1在执行mysql数据备份前,可先执行命令查看磁盘容量: # df -h Filesystem Size Used Avail Use% Mounted on /dev/mapper/VolGroup-lv_root 50G 46G 1.6G 97% / tmpfs 1.9G 92K 1.9G 1% /dev/shm /dev/sda1 485M 39M 421M 9% /boot…...
UE4 材质学习笔记
CheapContrast与CheapContrast_RGB都是提升对比度的,一个是一维输入,一个是三维输入,让亮的地方更亮,暗的地方更暗,不像power虽然也是提升对比度,但是使用过后的结果都是变暗或者最多不变(值为1…...
TiDB 源码编译之 TiProxy 篇
作者: ShawnYan 原文来源: https://tidb.net/blog/3d57f54d TiProxy 简介 TiProxy 是一个基于 Apache 2.0 协议开源的、轻量级的 TiDB 数据库代理,基于 Go 语言编写,支持 MySQL 协议。 TiProxy 支持负载均衡,接收来…...
利用驱动漏洞
sbyt3/IObitUnlocker.Wrapper (github.com)...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
