matlab使用教程(26)—常微分方程的求解
1.求解非刚性 ODE
2.1 示例:非刚性 van der Pol 方程

dydt = odefun(t,y)
function dydt = vdp1(t,y)
%VDP1 Evaluate the van der Pol ODEs for mu = 1
%
% See also ODE113, ODE23, ODE45.
% Jacek Kierzenka and Lawrence F. Shampine
% Copyright 1984-2014 The MathWorks, Inc.
dydt = [y(2); (1-y(1)^2)*y(2)-y(1)];
[t,y] = ode45(@vdp1,[0 20],[2; 0]);
plot(t,y(:,1),'-o',t,y(:,2),'-o')
title('Solution of van der Pol Equation (\mu = 1) using ODE45');
xlabel('Time t');
ylabel('Solution y');
legend('y_1','y_2')
2.2 示例:非刚性欧拉方程
function rigidode
%RIGIDODE Euler equations of a rigid body without external forces.
% A standard test problem for non-stiff solvers proposed by Krogh. The
% analytical solutions are Jacobian elliptic functions, accessible in
% MATLAB. The interval here is about 1.5 periods; it is that for which
% solutions are plotted on p. 243 of Shampine and Gordon.
%
% L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary
% Differential Equations, W.H. Freeman & Co., 1975.
%
% See also ODE45, ODE23, ODE113, FUNCTION_HANDLE.
% Mark W. Reichelt and Lawrence F. Shampine, 3-23-94, 4-19-94
% Copyright 1984-2014 The MathWorks, Inc.
tspan = [0 12];
y0 = [0; 1; 1];
% solve the problem using ODE45
figure;
ode45(@f,tspan,y0);
% --------------------------------------------------------------------------
function dydt = f(t,y)
dydt = [ y(2)*y(3)-y(1)*y(3)-0.51*y(1)*y(2) ];
rigidode
title('Solution of Rigid Body w/o External Forces using ODE45')
legend('y_1','y_2','y_3','Location','Best')
2.求解刚性 ODE
2.1 什么是刚性 ODE?
2.2 求解器选项
2.3 示例:刚性 van der Pol 方程


function dydt = vdp1000(t,y)
%VDP1000 Evaluate the van der Pol ODEs for mu = 1000.
%
% See also ODE15S, ODE23S, ODE23T, ODE23TB.
% Jacek Kierzenka and Lawrence F. Shampine
% Copyright 1984-2014 The MathWorks, Inc.
dydt = [y(2); 1000*(1-y(1)^2)*y(2)-y(1)];
[t,y] = ode15s(@vdp1000,[0 3000],[2; 0]);
plot(t,y(:,1),'-o');
title('Solution of van der Pol Equation, \mu = 1000');
xlabel('Time t');
ylabel('Solution y_1');
2.4 示例:稀疏 Brusselator 方程组


function brussode(N)
%BRUSSODE Stiff problem modelling a chemical reaction (the Brusselator).
% The parameter N >= 2 is used to specify the number of grid points; the
% resulting system consists of 2N equations. By default, N is 20. The
% problem becomes increasingly stiff and increasingly sparse as N is
% increased. The Jacobian for this problem is a sparse constant matrix
% (banded with bandwidth 5).
%
% The property 'JPattern' is used to provide the solver with a sparse
% matrix of 1's and 0's showing the locations of nonzeros in the Jacobian
% df/dy. By default, the stiff solvers of the ODE Suite generate Jacobians
% numerically as full matrices. However, when a sparsity pattern is
% provided, the solver uses it to generate the Jacobian numerically as a
% sparse matrix. Providing a sparsity pattern can significantly reduce the
% number of function evaluations required to generate the Jacobian and can
% accelerate integration. For the BRUSSODE problem, only 4 evaluations of
% the function are needed to compute the 2N x 2N Jacobian matrix.
%
% Setting the 'Vectorized' property indicates the function f is
% vectorized.
%
% E. Hairer and G. Wanner, Solving Ordinary Differential Equations II,
% Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin,
% 1991, pp. 5-8.
%
% See also ODE15S, ODE23S, ODE23T, ODE23TB, ODESET, FUNCTION_HANDLE.
% Mark W. Reichelt and Lawrence F. Shampine, 8-30-94
% Copyright 1984-2014 The MathWorks, Inc.
% Problem parameter, shared with the nested function.
if nargin<1
N = 20;
end
tspan = [0; 10];
y0 = [1+sin((2*pi/(N+1))*(1:N)); repmat(3,1,N)];
options = odeset('Vectorized','on','JPattern',jpattern(N));
[t,y] = ode15s(@f,tspan,y0,options);
u = y(:,1:2:end);
x = (1:N)/(N+1);
figure;
surf(x,t,u);
view(-40,30);
xlabel('space');
ylabel('time');
zlabel('solution u');
title(['The Brusselator for N = ' num2str(N)]);
% -------------------------------------------------------------------------
% Nested function -- N is provided by the outer function.
%
function dydt = f(t,y)
% Derivative function
c = 0.02 * (N+1)^2;
dydt = zeros(2*N,size(y,2)); % preallocate dy/dt% Evaluate the 2 components of the function at one edge of the grid
% (with edge conditions).
i = 1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + c*(1-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + c*(3-2*y(i+1,:)+y(i+3,:));% Evaluate the 2 components of the function at all interior grid points.
i = 3:2:2*N-3;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
c*(y(i-2,:)-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
c*(y(i-1,:)-2*y(i+1,:)+y(i+3,:));% Evaluate the 2 components of the function at the other edge of the grid
% (with edge conditions).
i = 2*N-1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + c*(y(i-2,:)-2*y(i,:)+1);
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + c*(y(i-1,:)-2*y(i+1,:)+3);
end
% -------------------------------------------------------------------------
end % brussode% ---------------------------------------------------------------------------
% Subfunction -- the sparsity pattern
%
function S = jpattern(N)
% Jacobian sparsity pattern
B = ones(2*N,5);
B(2:2:2*N,2) = zeros(N,1);
B(1:2:2*N-1,4) = zeros(N,1);
S = spdiags(B,-2:2,2*N,2*N);
end
% ---------------------------------------------------------------------------
brussode
brussode(50)
相关文章:

matlab使用教程(26)—常微分方程的求解
1.求解非刚性 ODE 本页包含两个使用 ode45 来求解非刚性常微分方程的示例。MATLAB 提供几个非刚性 ODE 求解器。 • ode45 • ode23 • ode78 • ode89 • ode113 对于大多数非刚性问题,ode45 的性能最佳。但对于允许较宽松的误差容限或刚度适中的问题&…...

尚硅谷宋红康MySQL笔记 14-18
是记录,不会太详细,受本人知识限制会有错误,会有个人的理解在里面 第14章 视图 了解一下,数据库的常见对象 对象描述表(TABLE)表是存储数据的逻辑单元,以行和列的形式存在,列就是字段,行就是记…...

香港全新的虚拟资产服务商发牌制度
香港证监会2023年2月20日通告,原有虛擬資產交易平台如要符合資格參與當作為獲發牌的安排,必須在2023 年6 月1 日至2024 年2 月29 日期間(即由2023 年6 月1 日37起計九個月內)內,根據《打擊洗錢條例》下的虛擬資產服務提供者制度在網上提交完全…...
C# 泛型
目录 一、前言 二、相关内容 1、什么是泛型? 2、泛型类 3、泛型方法 4、限定类型参数 4.1、 类型参数的基本约束 4.2、接口约束 4.3、基类约束 4.5、泛型参数与限定类型参数的关系 4.6、自定义约束 5、使用泛型的好处 5.1、代码复用性 5.2、类型安全…...

servlet,Filter,责任的设计模式,静态代理
servlet servlet是前端和数据库交互的一个桥梁 静态网页资源的技术:在前端整个运行的过程中 我们的网页代码不发生改变的这种情况就称为静态的网页资源技术动态网页资源的技术:在前端运行的过程中 我们的前端页面代码会发生改变的这种情况就称为 动态的网…...
C++中的运算符总结(5):按位运算符(上)
C中的运算符总结(5):按位运算符(上) 9、按位运算符 NOT( ~)、 AND( &)、 OR( |)和 XOR( ^) 逻辑运算符和…...
8.Oracle中多表连接查询方式
表连接分类: 内连接、外连接、交叉连接、自连接 1 内连接 内连接是一种常见的多表关联查询方式,一般使用关键字INNER JOIN来实现。其中,INNER关键字可以省略,当只使用JOIN关键字时,语句只表示内连接操作。在使用内连…...

Linux 安装mysql(ARM架构)
添加mysql用户组和mysql用户 安装依赖libaio yum install -y libaio* 下载Mysql wget https://obs.cn-north-4.myhuaweicloud.com/obs-mirror-ftp4/database/mysql-5.7.27-aarch64.tar.gz安装mysql 解压Mysql tar xvf mysql-5.7.27-aarch64.tar.gz -C /usr/local/ 重命名 …...
git:git clone报错提示permissions xxxx for xxxxxx are too open
问题: 如题 参考: [密钥权限过大错误]ssh “permissions are too open” error 解决办法: 将id_rsa和id_rsa.pub的权限改为600...
elasticSearch数据的导入和导出
http://wget https://nodejs.org/dist/v10.13.0/node-v10.13.0-linux-x64.tar.gz 解压即可: 1、将索引中的数据导出到本地 myindex 是我的索引 elasticdump --inputhttp://localhost:9200/myindex--output/home/date/myindex.json2、将本地数据导入es中 elasticdum…...

DDR PHY
1.ddr phy架构 1.pub(phy unility block) 支持特性: (1)不支持SDRAM的DLL off mode (2)数据位宽是以8bit逐渐递增的(这样做的目的是因为可能支持16/32/64bit的总线位宽ÿ…...

XSS攻击是怎么回事?记录一下
title: XSS攻击 date: 2023-08-27 19:15:57 tags: [XSS, 网络安全] categories: 网络安全 今天学习了一个网络攻击的手段,XSS攻击技术,大家自建网站的朋友,记得看看是否有此漏洞。 🎈 XSS 攻击 全称跨站脚本攻击 Cross Site Sc…...

FFmpeg支持多线程编码并保存mp4文件示例
之前介绍的示例: (1).https://blog.csdn.net/fengbingchun/article/details/132129988 中对编码后数据保存成mp4 (2).https://blog.csdn.net/fengbingchun/article/details/132128885 中通过AVIOContext实现从内存读取数据 (3).https://blog.csdn.net/fengbingchun/…...

一文搞懂深度信念网络!DBN概念介绍与Pytorch实战
目录 一、概述1.1 深度信念网络的概述1.2 深度信念网络与其他深度学习模型的比较结构层次学习方式训练和优化应用领域 1.3 应用领域图像识别与处理自然语言处理推荐系统语音识别无监督学习与异常检测药物发现与生物信息学 二、结构2.1 受限玻尔兹曼机(RBM࿰…...
MyBatis:使用注解让数据库操作更简单
目录 一、简介 二、配置 三、基于注解的基本使用 四、测试 总结 一、简介 在Java开发中,数据库操作是一个常见而重要的任务。为了方便地执行SQL语句,获取结果集,处理异常等,我们通常需要使用JDBC(Java Database …...

基于PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化
我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时…...

4.网络设计与redis、memcached、nginx组件(一)
网络组件系列文章目录 第四章 网络设计与redis、memcached、nginx组件 文章目录 网络组件系列文章目录文章的思维导图前言一、网络相关的问题,网络开发中要处理那些问题?网络操作IO连接建立连接断开消息到达消息发送网络操作IO特性 二、网络中IO检测IO函…...
leetcode分类刷题:矩阵顺时针模拟
1、这种题目是对代码熟练度考察,模拟顺时针建立或访问矩阵,需要注意矩阵是否为方阵 2、具体思路:以圈数为循环条件,每一圈都坚持左闭右开的区间规则;当小的行列值为奇数,最后一圈为一行或一列或一个数字的不…...
Java8新特性整理记录
1、list实体集合根据某个属性分组后求和 方法一: list.stream().collect(Collectors.groupingBy(e -> e.getId())).values().stream().map(d -> {DemoEntity sampleData d.get(0);sampleData.setPremium(d.stream().map(s -> new BigDecimal(s.getPrem…...
43.227.196.1 RAID技术有什么意义?
RAID(Redundant Array of Inexpensive Disks)技术是一种数据存储技术,它通过将多个硬盘组合在一起,来提高数据存储的性能、可靠性和容错性。 RAID技术的主要意义包括: 提高数据读写性能:RAID技术可以将多…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...

边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...