matlab使用教程(26)—常微分方程的求解
1.求解非刚性 ODE
2.1 示例:非刚性 van der Pol 方程
dydt = odefun(t,y)

function dydt = vdp1(t,y)
%VDP1 Evaluate the van der Pol ODEs for mu = 1
%
% See also ODE113, ODE23, ODE45.
% Jacek Kierzenka and Lawrence F. Shampine
% Copyright 1984-2014 The MathWorks, Inc.
dydt = [y(2); (1-y(1)^2)*y(2)-y(1)];
[t,y] = ode45(@vdp1,[0 20],[2; 0]); plot(t,y(:,1),'-o',t,y(:,2),'-o')
title('Solution of van der Pol Equation (\mu = 1) using ODE45');
xlabel('Time t');
ylabel('Solution y');
legend('y_1','y_2') 
2.2 示例:非刚性欧拉方程

function rigidode
%RIGIDODE Euler equations of a rigid body without external forces.
% A standard test problem for non-stiff solvers proposed by Krogh. The
% analytical solutions are Jacobian elliptic functions, accessible in
% MATLAB. The interval here is about 1.5 periods; it is that for which
% solutions are plotted on p. 243 of Shampine and Gordon.
%
% L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary
% Differential Equations, W.H. Freeman & Co., 1975.
%
% See also ODE45, ODE23, ODE113, FUNCTION_HANDLE.
% Mark W. Reichelt and Lawrence F. Shampine, 3-23-94, 4-19-94
% Copyright 1984-2014 The MathWorks, Inc.
tspan = [0 12];
y0 = [0; 1; 1];
% solve the problem using ODE45
figure;
ode45(@f,tspan,y0);
% --------------------------------------------------------------------------
function dydt = f(t,y)
dydt = [ y(2)*y(3)-y(1)*y(3)-0.51*y(1)*y(2) ]; rigidode
title('Solution of Rigid Body w/o External Forces using ODE45')
legend('y_1','y_2','y_3','Location','Best') 
2.求解刚性 ODE
2.1 什么是刚性 ODE?
2.2 求解器选项
2.3 示例:刚性 van der Pol 方程
function dydt = vdp1000(t,y)
%VDP1000 Evaluate the van der Pol ODEs for mu = 1000.
%
% See also ODE15S, ODE23S, ODE23T, ODE23TB.
% Jacek Kierzenka and Lawrence F. Shampine
% Copyright 1984-2014 The MathWorks, Inc.
dydt = [y(2); 1000*(1-y(1)^2)*y(2)-y(1)]; [t,y] = ode15s(@vdp1000,[0 3000],[2; 0]);
plot(t,y(:,1),'-o');
title('Solution of van der Pol Equation, \mu = 1000');
xlabel('Time t');
ylabel('Solution y_1'); 
2.4 示例:稀疏 Brusselator 方程组
function brussode(N)
%BRUSSODE Stiff problem modelling a chemical reaction (the Brusselator).
% The parameter N >= 2 is used to specify the number of grid points; the
% resulting system consists of 2N equations. By default, N is 20. The
% problem becomes increasingly stiff and increasingly sparse as N is
% increased. The Jacobian for this problem is a sparse constant matrix
% (banded with bandwidth 5).
%
% The property 'JPattern' is used to provide the solver with a sparse
% matrix of 1's and 0's showing the locations of nonzeros in the Jacobian
% df/dy. By default, the stiff solvers of the ODE Suite generate Jacobians
% numerically as full matrices. However, when a sparsity pattern is
% provided, the solver uses it to generate the Jacobian numerically as a
% sparse matrix. Providing a sparsity pattern can significantly reduce the
% number of function evaluations required to generate the Jacobian and can
% accelerate integration. For the BRUSSODE problem, only 4 evaluations of
% the function are needed to compute the 2N x 2N Jacobian matrix.
%
% Setting the 'Vectorized' property indicates the function f is
% vectorized.
%
% E. Hairer and G. Wanner, Solving Ordinary Differential Equations II,
% Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin,
% 1991, pp. 5-8.
%
% See also ODE15S, ODE23S, ODE23T, ODE23TB, ODESET, FUNCTION_HANDLE.
% Mark W. Reichelt and Lawrence F. Shampine, 8-30-94
% Copyright 1984-2014 The MathWorks, Inc.
% Problem parameter, shared with the nested function.
if nargin<1
N = 20;
end
tspan = [0; 10];
y0 = [1+sin((2*pi/(N+1))*(1:N)); repmat(3,1,N)];
options = odeset('Vectorized','on','JPattern',jpattern(N));
[t,y] = ode15s(@f,tspan,y0,options);
u = y(:,1:2:end);
x = (1:N)/(N+1);
figure;
surf(x,t,u);
view(-40,30);
xlabel('space');
ylabel('time');
zlabel('solution u');
title(['The Brusselator for N = ' num2str(N)]);
% -------------------------------------------------------------------------
% Nested function -- N is provided by the outer function.
%
function dydt = f(t,y)
% Derivative function
c = 0.02 * (N+1)^2;
dydt = zeros(2*N,size(y,2)); % preallocate dy/dt% Evaluate the 2 components of the function at one edge of the grid
% (with edge conditions).
i = 1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + c*(1-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + c*(3-2*y(i+1,:)+y(i+3,:));% Evaluate the 2 components of the function at all interior grid points.
i = 3:2:2*N-3;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
c*(y(i-2,:)-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
c*(y(i-1,:)-2*y(i+1,:)+y(i+3,:));% Evaluate the 2 components of the function at the other edge of the grid
% (with edge conditions).
i = 2*N-1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + c*(y(i-2,:)-2*y(i,:)+1);
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + c*(y(i-1,:)-2*y(i+1,:)+3);
end
% -------------------------------------------------------------------------
end % brussode% ---------------------------------------------------------------------------
% Subfunction -- the sparsity pattern
%
function S = jpattern(N)
% Jacobian sparsity pattern
B = ones(2*N,5);
B(2:2:2*N,2) = zeros(N,1);
B(1:2:2*N-1,4) = zeros(N,1);
S = spdiags(B,-2:2,2*N,2*N);
end
% --------------------------------------------------------------------------- brussode 
brussode(50) 
相关文章:
matlab使用教程(26)—常微分方程的求解
1.求解非刚性 ODE 本页包含两个使用 ode45 来求解非刚性常微分方程的示例。MATLAB 提供几个非刚性 ODE 求解器。 • ode45 • ode23 • ode78 • ode89 • ode113 对于大多数非刚性问题,ode45 的性能最佳。但对于允许较宽松的误差容限或刚度适中的问题&…...
尚硅谷宋红康MySQL笔记 14-18
是记录,不会太详细,受本人知识限制会有错误,会有个人的理解在里面 第14章 视图 了解一下,数据库的常见对象 对象描述表(TABLE)表是存储数据的逻辑单元,以行和列的形式存在,列就是字段,行就是记…...
香港全新的虚拟资产服务商发牌制度
香港证监会2023年2月20日通告,原有虛擬資產交易平台如要符合資格參與當作為獲發牌的安排,必須在2023 年6 月1 日至2024 年2 月29 日期間(即由2023 年6 月1 日37起計九個月內)內,根據《打擊洗錢條例》下的虛擬資產服務提供者制度在網上提交完全…...
C# 泛型
目录 一、前言 二、相关内容 1、什么是泛型? 2、泛型类 3、泛型方法 4、限定类型参数 4.1、 类型参数的基本约束 4.2、接口约束 4.3、基类约束 4.5、泛型参数与限定类型参数的关系 4.6、自定义约束 5、使用泛型的好处 5.1、代码复用性 5.2、类型安全…...
servlet,Filter,责任的设计模式,静态代理
servlet servlet是前端和数据库交互的一个桥梁 静态网页资源的技术:在前端整个运行的过程中 我们的网页代码不发生改变的这种情况就称为静态的网页资源技术动态网页资源的技术:在前端运行的过程中 我们的前端页面代码会发生改变的这种情况就称为 动态的网…...
C++中的运算符总结(5):按位运算符(上)
C中的运算符总结(5):按位运算符(上) 9、按位运算符 NOT( ~)、 AND( &)、 OR( |)和 XOR( ^) 逻辑运算符和…...
8.Oracle中多表连接查询方式
表连接分类: 内连接、外连接、交叉连接、自连接 1 内连接 内连接是一种常见的多表关联查询方式,一般使用关键字INNER JOIN来实现。其中,INNER关键字可以省略,当只使用JOIN关键字时,语句只表示内连接操作。在使用内连…...
Linux 安装mysql(ARM架构)
添加mysql用户组和mysql用户 安装依赖libaio yum install -y libaio* 下载Mysql wget https://obs.cn-north-4.myhuaweicloud.com/obs-mirror-ftp4/database/mysql-5.7.27-aarch64.tar.gz安装mysql 解压Mysql tar xvf mysql-5.7.27-aarch64.tar.gz -C /usr/local/ 重命名 …...
git:git clone报错提示permissions xxxx for xxxxxx are too open
问题: 如题 参考: [密钥权限过大错误]ssh “permissions are too open” error 解决办法: 将id_rsa和id_rsa.pub的权限改为600...
elasticSearch数据的导入和导出
http://wget https://nodejs.org/dist/v10.13.0/node-v10.13.0-linux-x64.tar.gz 解压即可: 1、将索引中的数据导出到本地 myindex 是我的索引 elasticdump --inputhttp://localhost:9200/myindex--output/home/date/myindex.json2、将本地数据导入es中 elasticdum…...
DDR PHY
1.ddr phy架构 1.pub(phy unility block) 支持特性: (1)不支持SDRAM的DLL off mode (2)数据位宽是以8bit逐渐递增的(这样做的目的是因为可能支持16/32/64bit的总线位宽ÿ…...
XSS攻击是怎么回事?记录一下
title: XSS攻击 date: 2023-08-27 19:15:57 tags: [XSS, 网络安全] categories: 网络安全 今天学习了一个网络攻击的手段,XSS攻击技术,大家自建网站的朋友,记得看看是否有此漏洞。 🎈 XSS 攻击 全称跨站脚本攻击 Cross Site Sc…...
FFmpeg支持多线程编码并保存mp4文件示例
之前介绍的示例: (1).https://blog.csdn.net/fengbingchun/article/details/132129988 中对编码后数据保存成mp4 (2).https://blog.csdn.net/fengbingchun/article/details/132128885 中通过AVIOContext实现从内存读取数据 (3).https://blog.csdn.net/fengbingchun/…...
一文搞懂深度信念网络!DBN概念介绍与Pytorch实战
目录 一、概述1.1 深度信念网络的概述1.2 深度信念网络与其他深度学习模型的比较结构层次学习方式训练和优化应用领域 1.3 应用领域图像识别与处理自然语言处理推荐系统语音识别无监督学习与异常检测药物发现与生物信息学 二、结构2.1 受限玻尔兹曼机(RBM࿰…...
MyBatis:使用注解让数据库操作更简单
目录 一、简介 二、配置 三、基于注解的基本使用 四、测试 总结 一、简介 在Java开发中,数据库操作是一个常见而重要的任务。为了方便地执行SQL语句,获取结果集,处理异常等,我们通常需要使用JDBC(Java Database …...
基于PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化
我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时…...
4.网络设计与redis、memcached、nginx组件(一)
网络组件系列文章目录 第四章 网络设计与redis、memcached、nginx组件 文章目录 网络组件系列文章目录文章的思维导图前言一、网络相关的问题,网络开发中要处理那些问题?网络操作IO连接建立连接断开消息到达消息发送网络操作IO特性 二、网络中IO检测IO函…...
leetcode分类刷题:矩阵顺时针模拟
1、这种题目是对代码熟练度考察,模拟顺时针建立或访问矩阵,需要注意矩阵是否为方阵 2、具体思路:以圈数为循环条件,每一圈都坚持左闭右开的区间规则;当小的行列值为奇数,最后一圈为一行或一列或一个数字的不…...
Java8新特性整理记录
1、list实体集合根据某个属性分组后求和 方法一: list.stream().collect(Collectors.groupingBy(e -> e.getId())).values().stream().map(d -> {DemoEntity sampleData d.get(0);sampleData.setPremium(d.stream().map(s -> new BigDecimal(s.getPrem…...
43.227.196.1 RAID技术有什么意义?
RAID(Redundant Array of Inexpensive Disks)技术是一种数据存储技术,它通过将多个硬盘组合在一起,来提高数据存储的性能、可靠性和容错性。 RAID技术的主要意义包括: 提高数据读写性能:RAID技术可以将多…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
stm32wle5 lpuart DMA数据不接收
配置波特率9600时,需要使用外部低速晶振...
Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...
C++_哈希表
本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说,直接开始吧! 一、基础概念 1. 哈希核心思想: 哈希函数的作用:通过此函数建立一个Key与存储位置之间的映射关系。理想目标:实现…...
macOS 终端智能代理检测
🧠 终端智能代理检测:自动判断是否需要设置代理访问 GitHub 在开发中,使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新,例如: fatal: unable to access https://github.com/ohmyzsh/oh…...
