大数据-玩转数据-Flink窗口函数
一、Flink窗口函数
前面指定了窗口的分配器, 接着我们需要来指定如何计算, 这事由window function来负责. 一旦窗口关闭, window function 去计算处理窗口中的每个元素.
window function 可以是ReduceFunction,AggregateFunction,or ProcessWindowFunction中的任意一种.
ReduceFunction,AggregateFunction更加高效, 原因就是Flink可以对到来的元素进行增量聚合 . ProcessWindowFunction 可以得到一个包含这个窗口中所有元素的迭代器, 以及这些元素所属窗口的一些元数据信息.
ProcessWindowFunction不能被高效执行的原因是Flink在执行这个函数之前, 需要在内部缓存这个窗口上所有的元素。
除了一些简单聚合,比如 sum,max,min,maxBay,minBay ,有以下窗口聚合函数。
二、ReduceFunction(增量聚合函数)
输入和输出必须一致
package com.lyh.flink07;import com.lyh.bean.WaterSensor;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;public class Window_s_function {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.socketTextStream("hadoop100",9999).map(line -> {String[] data = line.split(",");return new WaterSensor(data[0],Long.valueOf(data[1]),Integer.valueOf(data[2]));}).keyBy(WaterSensor::getId).window(TumblingProcessingTimeWindows.of(Time.seconds(5))).reduce(new ReduceFunction<WaterSensor>() {@Overridepublic WaterSensor reduce(WaterSensor value1,WaterSensor value2) throws Exception {System.out.println("Window_s_function.reduce");value1.setVc ( value1.getVc() + value2.getVc());return (value1);}}).print();env.execute();}
}
运行结果


三、AggregateFunction(增量聚合函数)
输入和输出可以不一致
package com.lyh.flink07;import com.lyh.bean.WaterSensor;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import org.apache.kafka.common.metrics.stats.Avg;import java.util.List;public class Window_s_function_2 {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.socketTextStream("hadoop100",9999).map(line -> {String[] data = line.split(",");return new WaterSensor(data[0],Long.valueOf(data[1]),Integer.valueOf(data[2]));}).keyBy(WaterSensor::getId).window(TumblingProcessingTimeWindows.of(Time.seconds(5))).aggregate(new AggregateFunction<WaterSensor, Avg, Double>() {@Overridepublic Avg createAccumulator() {return new Avg();}@Overridepublic Avg add(WaterSensor value, Avg acc) {acc.sum += value.getVc();acc.couunt++;return acc;}@Overridepublic Double getResult(Avg acc) {return acc.sum * 1.0 / acc.couunt;}@Overridepublic Avg merge(Avg avg, Avg acc1) {return null;}},new ProcessWindowFunction<Double, String, String, TimeWindow>() {@Overridepublic void process(String key,Context ctx,Iterable<Double> elements,Collector<String> out) throws Exception {Double result = elements.iterator().next();long starttime = ctx.window().getStart();long endtime = ctx.window().getEnd();out.collect("窗口:" + starttime + " " + endtime + " key: " + key + " result: " + result);}}).print();env.execute();}public static class Avg {public Integer sum = 0;public Long couunt = 0L;};
}
运行结果


四、ProcessWindowFunction(全窗口函数)
上面例子里已经用到
new ProcessWindowFunction<Double, String, String, TimeWindow>() {@Overridepublic void process(String key,Context ctx,Iterable<Double> elements,Collector<String> out) throws Exception {Double result = elements.iterator().next();long starttime = ctx.window().getStart();long endtime = ctx.window().getEnd();out.collect("窗口:" + starttime + " " + endtime + " key: " + key + " result: " + result);}}
相关文章:
大数据-玩转数据-Flink窗口函数
一、Flink窗口函数 前面指定了窗口的分配器, 接着我们需要来指定如何计算, 这事由window function来负责. 一旦窗口关闭, window function 去计算处理窗口中的每个元素. window function 可以是ReduceFunction,AggregateFunction,or ProcessWindowFunction中的任意一种. Reduc…...
Docker网络-探索容器网络如何相互通信
当今世界,企业热衷于容器化,这需要强大的网络技能来正确配置容器架构,因此引入了 Docker Networking 的概念。Docker 是一种容器化平台,允许您在独立、轻量级的容器中运行应用程序和服务。Docker 提供了一套强大的网络功能&#x…...
ESP32-CAM模块Arduino环境搭建测试
ESP32-CAM模块Arduino环境搭建测试 一.ESP32OV2640摄像头模块CameraWebServer视频查看 二.测试ESP32-CAM(后续称cam模块)代码是否上传执行成功测试 const int led0 12; const int led1 13;void setup() {// put your setup code here, to run once:pinMode(led0, OUTPUT);pin…...
webassembly001 webassembly简述
WebAssembly 官方地址:https://webassembly.org/相关历史 https://en.wikipedia.org/wiki/WebAssembly https://brendaneich.com/2015/06/from-asm-js-to-webassembly/WebAssembly(缩写为Wasm)是一种基于堆栈的虚拟机的二进制指令格式。Wasm 被设计为编…...
vue 使用C-Lodop打印小票
先从官网下载js文件 https://www.lodop.net/LodopDemo.html 打开安装程序,一直下一步既可,我这边已经安装过就不演示了。 // 引入 import { getLodop } from /utils/CLodopfuncs.js;// 使用 let LODOP getLodop()let Count LODOP.GET_PRINTER_COUNT…...
【C++进阶(二)】STL大法--vector的深度剖析以及模拟实现
💓博主CSDN主页:杭电码农-NEO💓 ⏩专栏分类:C从入门到精通⏪ 🚚代码仓库:NEO的学习日记🚚 🌹关注我🫵带你学习C 🔝🔝 vector 1. 前言2. 熟悉vector的接口函数2.1 vec…...
1. import pandas as pd 导入库
【目录】 文章目录 1. import pandas as pd 导入库1. pandas库的概念2. 导入pandas库2.1 常规导入2.2 别名导入 3. 别名的作用4. 课堂练习 【正文】 1. import pandas as pd 导入库 【学习时间】 10分钟 1. pandas库的概念 pandas:熊猫panda的复数, …...
DMK5框选变量之后不显示其他位置的此变量高亮
使用软件MDK5.3.8版本 如下在2的位置选择之后,其他同样的变量没有高亮,因为1的原因折叠了; 展开折叠之后就可以了...
0061__Appium
Appium Documentation - Appium Documentation APP自动化测试(3)-Appium Inspector介绍_六天测试工程师的博客-CSDN博客 https://github.com/appium/appium-inspector https://github.com/appium/appium-desktop https://github.com/appium/appium...
【DEVOPS】需求跟踪管理全面落地
0. 目录 1. 现状/背景2. 需求管理存在的问题3. 改进思路/措施4. 所谓"禅道尚未普及/铺开"5. 最后6. 相关 1. 现状/背景 近期又被领导问到"如何对项目过程中的需求进行量化和跟踪管理"。这真是一个狗皮膏药似的问题,反反复复地,隔一…...
算法修炼Day57|647. 回文子串 ● 516.最长回文子序列
LeetCode:647. 回文子串 647. 回文子串 - 力扣(LeetCode) 1.思路 暴力思路见对应代码… 动规解法:画图推导动规公式,当前状态由左侧和左下角推出,所以首层应该采用倒序的方式,内部采用正序的方式。 2.…...
呈现数据的精妙之道:选择合适的可视化方法
在当今数据时代,数据可视化已成为理解和传达信息的重要手段。然而,选择适合的数据可视化方法对于有效地呈现数据至关重要。不同的数据和目标需要不同的可视化方法,下面我们将探讨如何选择最佳的数据可视化方法来呈现数据。 1. 理解数据类型&a…...
数据结构(Java实现)-java对象的比较
元素的比较 基本类型的比较 在Java中,基本类型的对象可以直接比较大小。 对象比较的问题 Java中引用类型的变量不能直接按照 > 或者 < 方式进行比较 默认情况下调用的就是equal方法,但是该方法的比较规则是:没有比较引用变量引用对象的…...
Wolfram Mathematica 13 for Mac 数学计算工具
Wolfram Mathematica for Mac是一款功能强大、划时代的科学计算软件。它结合了数字和符号计算引擎、图形系统、编程语言、文本系统以及与其他应用程序的高级连接,在许多功能方面处于世界领先地位,截至2009年,它是使用最广泛的数学软件之一。人…...
系统架构设计高级技能 · Web架构
现在的一切都是为将来的梦想编织翅膀,让梦想在现实中展翅高飞。 Now everything is for the future of dream weaving wings, let the dream fly in reality. 点击进入系列文章目录 系统架构设计高级技能 Web架构 一、Web架构介绍1.1 Web架构涉及技术1.2 单台服务…...
再写CentOS7升级OpenSSL-1.0.1U
本文在CentOS7.4以及TencentOS 2.4上测试通过。 原系统自带OpenSSL 1.0.2k-fips。 编译安装方法跟之前的没啥区别。 从官网下载1.0.1u版https://www.openssl.org/source/ 使用tar解包 tar xfz openssl-1.0.1u.tar.gz 依次执行如下: cd openssl-1.0.1u ./con…...
HBase--技术文档--基本概念--《快速扫盲》
官网 Apache HBase – Apache HBase™ Home 阿里云hbase 云数据库HBase_大数据存储_订单风控_数据库-阿里云 云数据库 HBase-阿里云帮助中心 基本概念 HBase是一种分布式、可扩展、支持海量数据存储的NoSQL数据库。它基于Hadoop,采用列式存储方式,可…...
如何利用SFTP协议远程实现更安全的文件传输 ——【内网穿透】
🎬 鸽芷咕:个人主页 🔥 个人专栏: 《高效编程技巧》《cpolar》 ⛺️生活的理想,就是为了理想的生活! 文章目录 1. 安装openSSH1.1 安装SSH1.2 启动ssh 2. 安装cpolar2.1 配置termux服务 3. 远程SFTP连接配置3.1 查看生成的随机公…...
深度学习8:详解生成对抗网络原理
目录 大纲 生成随机变量 可以伪随机生成均匀随机变量 随机变量表示为操作或过程的结果 逆变换方法 生成模型 我们试图生成非常复杂的随机变量…… …所以让我们使用神经网络的变换方法作为函数! 生成匹配网络 培养生成模型 比较基于样本的两个概率分布 …...
sql入门-多表查询
案例涉及表 ----------------------------------建表语句之前翻看之前博客文章 多表查询 -- 学生表 create table studen ( id int primary key auto_increment comment id, name varchar(50) comment 姓名, no varchar(10) comment 学号 ) comment 学生表; insert…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
