大数据-玩转数据-Flink窗口函数
一、Flink窗口函数
前面指定了窗口的分配器, 接着我们需要来指定如何计算, 这事由window function来负责. 一旦窗口关闭, window function 去计算处理窗口中的每个元素.
window function 可以是ReduceFunction,AggregateFunction,or ProcessWindowFunction中的任意一种.
ReduceFunction,AggregateFunction更加高效, 原因就是Flink可以对到来的元素进行增量聚合 . ProcessWindowFunction 可以得到一个包含这个窗口中所有元素的迭代器, 以及这些元素所属窗口的一些元数据信息.
ProcessWindowFunction不能被高效执行的原因是Flink在执行这个函数之前, 需要在内部缓存这个窗口上所有的元素。
除了一些简单聚合,比如 sum,max,min,maxBay,minBay ,有以下窗口聚合函数。
二、ReduceFunction(增量聚合函数)
输入和输出必须一致
package com.lyh.flink07;import com.lyh.bean.WaterSensor;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;public class Window_s_function {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.socketTextStream("hadoop100",9999).map(line -> {String[] data = line.split(",");return new WaterSensor(data[0],Long.valueOf(data[1]),Integer.valueOf(data[2]));}).keyBy(WaterSensor::getId).window(TumblingProcessingTimeWindows.of(Time.seconds(5))).reduce(new ReduceFunction<WaterSensor>() {@Overridepublic WaterSensor reduce(WaterSensor value1,WaterSensor value2) throws Exception {System.out.println("Window_s_function.reduce");value1.setVc ( value1.getVc() + value2.getVc());return (value1);}}).print();env.execute();}
}
运行结果


三、AggregateFunction(增量聚合函数)
输入和输出可以不一致
package com.lyh.flink07;import com.lyh.bean.WaterSensor;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import org.apache.kafka.common.metrics.stats.Avg;import java.util.List;public class Window_s_function_2 {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.socketTextStream("hadoop100",9999).map(line -> {String[] data = line.split(",");return new WaterSensor(data[0],Long.valueOf(data[1]),Integer.valueOf(data[2]));}).keyBy(WaterSensor::getId).window(TumblingProcessingTimeWindows.of(Time.seconds(5))).aggregate(new AggregateFunction<WaterSensor, Avg, Double>() {@Overridepublic Avg createAccumulator() {return new Avg();}@Overridepublic Avg add(WaterSensor value, Avg acc) {acc.sum += value.getVc();acc.couunt++;return acc;}@Overridepublic Double getResult(Avg acc) {return acc.sum * 1.0 / acc.couunt;}@Overridepublic Avg merge(Avg avg, Avg acc1) {return null;}},new ProcessWindowFunction<Double, String, String, TimeWindow>() {@Overridepublic void process(String key,Context ctx,Iterable<Double> elements,Collector<String> out) throws Exception {Double result = elements.iterator().next();long starttime = ctx.window().getStart();long endtime = ctx.window().getEnd();out.collect("窗口:" + starttime + " " + endtime + " key: " + key + " result: " + result);}}).print();env.execute();}public static class Avg {public Integer sum = 0;public Long couunt = 0L;};
}
运行结果


四、ProcessWindowFunction(全窗口函数)
上面例子里已经用到
new ProcessWindowFunction<Double, String, String, TimeWindow>() {@Overridepublic void process(String key,Context ctx,Iterable<Double> elements,Collector<String> out) throws Exception {Double result = elements.iterator().next();long starttime = ctx.window().getStart();long endtime = ctx.window().getEnd();out.collect("窗口:" + starttime + " " + endtime + " key: " + key + " result: " + result);}}
相关文章:
大数据-玩转数据-Flink窗口函数
一、Flink窗口函数 前面指定了窗口的分配器, 接着我们需要来指定如何计算, 这事由window function来负责. 一旦窗口关闭, window function 去计算处理窗口中的每个元素. window function 可以是ReduceFunction,AggregateFunction,or ProcessWindowFunction中的任意一种. Reduc…...
Docker网络-探索容器网络如何相互通信
当今世界,企业热衷于容器化,这需要强大的网络技能来正确配置容器架构,因此引入了 Docker Networking 的概念。Docker 是一种容器化平台,允许您在独立、轻量级的容器中运行应用程序和服务。Docker 提供了一套强大的网络功能&#x…...
ESP32-CAM模块Arduino环境搭建测试
ESP32-CAM模块Arduino环境搭建测试 一.ESP32OV2640摄像头模块CameraWebServer视频查看 二.测试ESP32-CAM(后续称cam模块)代码是否上传执行成功测试 const int led0 12; const int led1 13;void setup() {// put your setup code here, to run once:pinMode(led0, OUTPUT);pin…...
webassembly001 webassembly简述
WebAssembly 官方地址:https://webassembly.org/相关历史 https://en.wikipedia.org/wiki/WebAssembly https://brendaneich.com/2015/06/from-asm-js-to-webassembly/WebAssembly(缩写为Wasm)是一种基于堆栈的虚拟机的二进制指令格式。Wasm 被设计为编…...
vue 使用C-Lodop打印小票
先从官网下载js文件 https://www.lodop.net/LodopDemo.html 打开安装程序,一直下一步既可,我这边已经安装过就不演示了。 // 引入 import { getLodop } from /utils/CLodopfuncs.js;// 使用 let LODOP getLodop()let Count LODOP.GET_PRINTER_COUNT…...
【C++进阶(二)】STL大法--vector的深度剖析以及模拟实现
💓博主CSDN主页:杭电码农-NEO💓 ⏩专栏分类:C从入门到精通⏪ 🚚代码仓库:NEO的学习日记🚚 🌹关注我🫵带你学习C 🔝🔝 vector 1. 前言2. 熟悉vector的接口函数2.1 vec…...
1. import pandas as pd 导入库
【目录】 文章目录 1. import pandas as pd 导入库1. pandas库的概念2. 导入pandas库2.1 常规导入2.2 别名导入 3. 别名的作用4. 课堂练习 【正文】 1. import pandas as pd 导入库 【学习时间】 10分钟 1. pandas库的概念 pandas:熊猫panda的复数, …...
DMK5框选变量之后不显示其他位置的此变量高亮
使用软件MDK5.3.8版本 如下在2的位置选择之后,其他同样的变量没有高亮,因为1的原因折叠了; 展开折叠之后就可以了...
0061__Appium
Appium Documentation - Appium Documentation APP自动化测试(3)-Appium Inspector介绍_六天测试工程师的博客-CSDN博客 https://github.com/appium/appium-inspector https://github.com/appium/appium-desktop https://github.com/appium/appium...
【DEVOPS】需求跟踪管理全面落地
0. 目录 1. 现状/背景2. 需求管理存在的问题3. 改进思路/措施4. 所谓"禅道尚未普及/铺开"5. 最后6. 相关 1. 现状/背景 近期又被领导问到"如何对项目过程中的需求进行量化和跟踪管理"。这真是一个狗皮膏药似的问题,反反复复地,隔一…...
算法修炼Day57|647. 回文子串 ● 516.最长回文子序列
LeetCode:647. 回文子串 647. 回文子串 - 力扣(LeetCode) 1.思路 暴力思路见对应代码… 动规解法:画图推导动规公式,当前状态由左侧和左下角推出,所以首层应该采用倒序的方式,内部采用正序的方式。 2.…...
呈现数据的精妙之道:选择合适的可视化方法
在当今数据时代,数据可视化已成为理解和传达信息的重要手段。然而,选择适合的数据可视化方法对于有效地呈现数据至关重要。不同的数据和目标需要不同的可视化方法,下面我们将探讨如何选择最佳的数据可视化方法来呈现数据。 1. 理解数据类型&a…...
数据结构(Java实现)-java对象的比较
元素的比较 基本类型的比较 在Java中,基本类型的对象可以直接比较大小。 对象比较的问题 Java中引用类型的变量不能直接按照 > 或者 < 方式进行比较 默认情况下调用的就是equal方法,但是该方法的比较规则是:没有比较引用变量引用对象的…...
Wolfram Mathematica 13 for Mac 数学计算工具
Wolfram Mathematica for Mac是一款功能强大、划时代的科学计算软件。它结合了数字和符号计算引擎、图形系统、编程语言、文本系统以及与其他应用程序的高级连接,在许多功能方面处于世界领先地位,截至2009年,它是使用最广泛的数学软件之一。人…...
系统架构设计高级技能 · Web架构
现在的一切都是为将来的梦想编织翅膀,让梦想在现实中展翅高飞。 Now everything is for the future of dream weaving wings, let the dream fly in reality. 点击进入系列文章目录 系统架构设计高级技能 Web架构 一、Web架构介绍1.1 Web架构涉及技术1.2 单台服务…...
再写CentOS7升级OpenSSL-1.0.1U
本文在CentOS7.4以及TencentOS 2.4上测试通过。 原系统自带OpenSSL 1.0.2k-fips。 编译安装方法跟之前的没啥区别。 从官网下载1.0.1u版https://www.openssl.org/source/ 使用tar解包 tar xfz openssl-1.0.1u.tar.gz 依次执行如下: cd openssl-1.0.1u ./con…...
HBase--技术文档--基本概念--《快速扫盲》
官网 Apache HBase – Apache HBase™ Home 阿里云hbase 云数据库HBase_大数据存储_订单风控_数据库-阿里云 云数据库 HBase-阿里云帮助中心 基本概念 HBase是一种分布式、可扩展、支持海量数据存储的NoSQL数据库。它基于Hadoop,采用列式存储方式,可…...
如何利用SFTP协议远程实现更安全的文件传输 ——【内网穿透】
🎬 鸽芷咕:个人主页 🔥 个人专栏: 《高效编程技巧》《cpolar》 ⛺️生活的理想,就是为了理想的生活! 文章目录 1. 安装openSSH1.1 安装SSH1.2 启动ssh 2. 安装cpolar2.1 配置termux服务 3. 远程SFTP连接配置3.1 查看生成的随机公…...
深度学习8:详解生成对抗网络原理
目录 大纲 生成随机变量 可以伪随机生成均匀随机变量 随机变量表示为操作或过程的结果 逆变换方法 生成模型 我们试图生成非常复杂的随机变量…… …所以让我们使用神经网络的变换方法作为函数! 生成匹配网络 培养生成模型 比较基于样本的两个概率分布 …...
sql入门-多表查询
案例涉及表 ----------------------------------建表语句之前翻看之前博客文章 多表查询 -- 学生表 create table studen ( id int primary key auto_increment comment id, name varchar(50) comment 姓名, no varchar(10) comment 学号 ) comment 学生表; insert…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
IP选择注意事项
IP选择注意事项 MTP、FTP、EFUSE、EMEMORY选择时,需要考虑以下参数,然后确定后选择IP。 容量工作电压范围温度范围擦除、烧写速度/耗时读取所有bit的时间待机功耗擦写、烧写功耗面积所需要的mask layer...
【Pandas】pandas DataFrame dropna
Pandas2.2 DataFrame Missing data handling 方法描述DataFrame.fillna([value, method, axis, …])用于填充 DataFrame 中的缺失值(NaN)DataFrame.backfill(*[, axis, inplace, …])用于**使用后向填充(即“下一个有效观测值”)…...
Web APIS Day01
1.声明变量const优先 那为什么一开始前面就不能用const呢,接下来看几个例子: 下面这张为什么可以用const呢?因为复杂数据的引用地址没变,数组还是数组,只是添加了个元素,本质没变,所以可以用con…...
[C++错误经验]case语句跳过变量初始化
标题:[C错误经验]case语句跳过变量初始化 水墨不写bug 文章目录 一、错误信息复现二、错误分析三、解决方法 一、错误信息复现 write.cc:80:14: error: jump to case label80 | case 2:| ^ write.cc:76:20: note: crosses initialization…...
