当前位置: 首页 > news >正文

LeetCode538. 把二叉搜索树转换为累加树

538. 把二叉搜索树转换为累加树

文章目录

      • [538. 把二叉搜索树转换为累加树](https://leetcode.cn/problems/convert-bst-to-greater-tree/)
        • 一、题目
        • 二、题解
          • 方法一:递归(中序遍历与节点更新)
          • 方法二:反向中序遍历与累加更新:更简洁的解法
          • 方法三:迭代(反向中序遍历)


一、题目

给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

  • 节点的左子树仅包含键 小于 节点键的节点。
  • 节点的右子树仅包含键 大于 节点键的节点。
  • 左右子树也必须是二叉搜索树。

示例 1:

img

输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:

输入:root = [0,null,1]
输出:[1,null,1]

示例 3:

输入:root = [1,0,2]
输出:[3,3,2]

示例 4:

输入:root = [3,2,4,1]
输出:[7,9,4,10]

提示:

  • 树中的节点数介于 0104 之间。
  • 每个节点的值介于 -104104 之间。
  • 树中的所有值 互不相同
  • 给定的树为二叉搜索树。

二、题解

方法一:递归(中序遍历与节点更新)

针对这个问题,我们可以考虑通过中序遍历来获取有序的节点值,然后从大到小更新节点的值,以满足累加树的要求。

算法思路

  1. 创建一个空的向量 array 用于存储中序遍历得到的有序节点值。

  2. 执行中序遍历函数 traversal_vec(root, array),该函数会将二叉搜索树的节点值按照从小到大的顺序存储在 array 中。

  3. array 的倒数第二个元素开始,将每个元素与其后一个元素相加,以便得到累加和。这一步保证了在累加树中,每个节点的值等于原树中大于或等于该节点值的所有节点值之和。

  4. 执行函数 traversal_res(root, array),该函数会将更新后的累加和值赋给二叉搜索树的每个节点。

  5. 返回更新后的二叉搜索树。

具体实现

以下是对每个步骤的详细实现:

class Solution {
public:int i = 0;// 中序遍历获取有序节点值并存储在array中void traversal_vec(TreeNode *root, vector<int> &array){if(root == nullptr) return;traversal_vec(root->left, array);array.push_back(root->val);traversal_vec(root->right, array);}// 更新节点值为累加和void traversal_res(TreeNode *root, vector<int>& array){if(root == nullptr) return;traversal_res(root->left, array);root->val = array[i++];traversal_res(root->right, array);}TreeNode* convertBST(TreeNode* root) {if(root == nullptr) return nullptr;vector<int> array;// 获取有序节点值traversal_vec(root, array);// 计算累加和for(int j = array.size() - 2; j >= 0; j--){array[j] += array[j+1];}// 更新节点值为累加和traversal_res(root, array);return root;}
};

或者将i作为参数传入traversal_res()也行:

class Solution {
public:void traversal_vec(TreeNode *root, vector<int> &array) {if (root == nullptr) return;traversal_vec(root->left, array);array.push_back(root->val);traversal_vec(root->right, array);}int traversal_res(TreeNode *root, int i, const vector<int> &array) {if (root == nullptr) return i;i = traversal_res(root->left, i, array);root->val = array[i];i++;i = traversal_res(root->right, i, array);return i;}TreeNode* convertBST(TreeNode* root) {if (root == nullptr) return nullptr;vector<int> array;traversal_vec(root, array);for (int j = array.size() - 2; j >= 0; j--) {array[j] += array[j + 1];}traversal_res(root, 0, array);return root;}
};

算法分析

  • 时间复杂度:算法的时间复杂度主要由两个部分构成:中序遍历和更新节点值。中序遍历需要访问每个节点一次,而更新节点值也需要访问每个节点一次。因此,算法的时间复杂度为 O(N),其中 N 是节点的数量。

  • 空间复杂度:算法的空间复杂度主要由中序遍历时存储节点值的数组 array 所占用的空间。在最坏的情况下,数组的大小为 N,因此空间复杂度为 O(N)。除此之外,递归调用栈也会占用一些空间,但是在二叉搜索树的情况下,递归调用栈的最大深度不会超过树的高度,因此额外空间的使用不会超过 O(log N)。

方法二:反向中序遍历与累加更新:更简洁的解法

算法思路

这个算法采用了一种不同的方法来实现二叉搜索树到累加树的转换。通过反向中序遍历(从右子树到左子树),我们可以更方便地得到大于当前节点值的节点值之和,然后直接更新节点值,从而获得累加树。

具体实现

class Solution {
public:// 反向中序遍历并更新节点值void convertBSTHelper(TreeNode* root, int& sum) {if(root == nullptr) return;convertBSTHelper(root->right, sum); // 先处理右子树sum += root->val; // 更新累加和root->val = sum; // 更新节点值convertBSTHelper(root->left, sum); // 处理左子树}TreeNode* convertBST(TreeNode* root) {if(root == nullptr) return nullptr;int sum = 0;convertBSTHelper(root, sum);return root;}
};

算法分析

  • 时间复杂度:算法的时间复杂度主要由中序遍历和更新节点值组成。每个节点都会被访问一次且只访问一次,因此时间复杂度为 O(N),其中 N 是节点的数量。
  • 空间复杂度:算法的空间复杂度由递归调用栈所占用的空间决定。在二叉搜索树的情况下,递归调用栈的最大深度不会超过树的高度,因此额外空间的使用不会超过 O(log N)。
方法三:迭代(反向中序遍历)

算法思路

这个算法采用了反向中序遍历的方式,通过栈来实现,来构建累加树。遍历的过程中,我们从最大值开始,逐步向较小值移动,同时将大于等于当前节点值的所有节点值累加起来,然后将该累加值赋予当前节点,最终构建出累加树。

具体实现

class Solution {
private:int previousValue; // 记录前一个节点的值// 反向中序遍历并更新节点值void reverseInorderTraversal(TreeNode* root) {stack<TreeNode*> nodeStack;TreeNode* current = root;while (current != nullptr || !nodeStack.empty()) {if (current != nullptr) {nodeStack.push(current);current = current->right; // 右子树} else {current = nodeStack.top(); // 弹出栈顶节点nodeStack.pop();// 更新节点值current->val += previousValue;previousValue = current->val;current = current->left; // 左子树}}}public:TreeNode* convertBST(TreeNode* root) {previousValue = 0; // 初始化前一个节点的值reverseInorderTraversal(root); // 反向中序遍历更新节点值return root;}
};

算法分析

  • 时间复杂度:算法的时间复杂度主要由反向中序遍历过程构成。每个节点会被访问一次且只访问一次,因此时间复杂度为 O(N),其中 N 是节点的数量。

  • 空间复杂度:算法的空间复杂度由栈所占用的空间决定。在最坏情况下,栈的大小可能达到树的高度,即 O(log N)。

相关文章:

LeetCode538. 把二叉搜索树转换为累加树

538. 把二叉搜索树转换为累加树 文章目录 [538. 把二叉搜索树转换为累加树](https://leetcode.cn/problems/convert-bst-to-greater-tree/)一、题目二、题解方法一&#xff1a;递归&#xff08;中序遍历与节点更新&#xff09;方法二&#xff1a;反向中序遍历与累加更新&#x…...

TP6 使用闭合语句查询多个or的模型语句

例子&#xff1a;查询出在单位表中所有的小学&#xff0c;初中和高中&#xff1b;其中school_period保存的就是学段数据$where []; $where[] function ($query) {$query->where(school_period, like, %小学%)->whereOr(school_period, like, %初中%)->whereOr(schoo…...

浅析Linux SCSI子系统:设备管理

文章目录 概述设备管理数据结构scsi_host_template&#xff1a;SCSI主机适配器模板scsi_host&#xff1a;SCSI主机适配器主机适配器支持DIF scsi_target&#xff1a;SCSI目标节点scsi_device&#xff1a;SCSI设备 添加主机适配器构建sysfs目录 添加SCSI设备挂载LunIO请求队列初…...

爬虫逆向实战(二十五)--某矿采购公告

一、数据接口分析 主页地址&#xff1a;某矿 1、抓包 通过抓包可以发现数据接口是cgxj/by-lx-page 2、判断是否有加密参数 请求参数是否加密&#xff1f; 通过查看“载荷”模块可以发现有一个param的加密参数 请求头是否加密&#xff1f; 无响应是否加密&#xff1f; 无c…...

DPLL 算法之分裂策略

前言 DPLL算法确实是基于树&#xff08;或二叉树&#xff09;的回溯搜索算法&#xff0c;它用于解决布尔可满足性问题&#xff08;SAT问题&#xff09;。下面我会分析您提到的DPLL算法中的分裂策略&#xff0c;以及它是如何在搜索过程中起作用的。 DPLL算法中的分裂策略是用于在…...

Jmeter+ServerAgent

一、Jmeter 下载 https://jmeter.apache.org/download_jmeter.cgi选择Binaries二进制下载 apache-jmeter-5.6.2.tgz 修改配置文件 jmeter下的bin目录&#xff0c;打开jmeter.properties 文件 languagezh_CN启动命令 cd apache-jmeter-5.6/bin sh jmeter二、ServerAgent 监…...

打破数据孤岛!时序数据库 TDengine 与创意物联感知平台完成兼容性互认

新型物联网实现良好建设的第一要务就是打破信息孤岛&#xff0c;将数据汇聚在平台统一处理&#xff0c;实现数据共享&#xff0c;放大物联终端的行业价值&#xff0c;实现系统开放性&#xff0c;以此营造丰富的行业应用环境。在此背景下&#xff0c;物联感知平台应运而生&#…...

ubuntu22安装和部署Kettle8.2

前提 kettle是纯java编写的etl开源工具&#xff0c;目前kettle7和kettle8都需要java8或者以上才能正常运行。所以运行kettle前先检查java环境是否正确配置&#xff0c;java版本是否是8或者以上。 kettle安装 1、创建kettle目录&#xff0c;并将kettle的zip包解压到kettle目…...

修复 Ubuntu Linux 中的“找不到命令‘python’”错误

在ubuntu 22.04版本中使用 callstack backtrace.txt 回溯错误点是碰到了该问题。 参考文章&#xff1a;链接 ubuntu22.04版本中默认只安装了python3版本 查看python各个版本安装情况&#xff0c;在终端输入命令&#xff1a; type python python2 python3如果安装了对应的版本…...

【业务功能篇86】微服务-springcloud-系统性能压力测试-jmeter-性能优化-JVM参数调优

系统性能压力测试 一、压力测试 压力测试是给软件不断加压&#xff0c;强制其在极限的情况下运行&#xff0c;观察它可以运行到何种程度&#xff0c;从而发现性能缺陷&#xff0c;是通过搭建与实际环境相似的测试环境&#xff0c;通过测试程序在同一时间内或某一段时间内&…...

mysql的登录与退出

mysql是c/s架构&#xff0c;意味着同时要有客户端和服务端 1 找到客户端。mysql.exe的安装目录 打开命令行 2 输入对应的服务器的ip&#xff0c;如果是本地&#xff0c;就是Localhost&#xff0c;如果是远程服务器&#xff0c;那就输入对应ip/域名。并且指定mysql监听的端口 …...

SOLIDWORKS工程图转DWG图层映射技巧

DWG格式的图纸在工程制图中有着非常重要的地位&#xff0c;工程实践中常常就需要将SOLIDWORKS工程图进行转换。对于两者之间数据衔接的妥善处理&#xff0c;是提升工作效率的有效手段。基于此目的&#xff0c;本次我们将介绍数据衔接的一个有效解决方案&#xff1a;图层数据的映…...

PMAC与Modbus主站进行Modbus Tcp通讯

PMAC与Modbus主站进行Modbus Tcp通讯 创建modbus通讯参数 在项目的PMAC Script Language\Global Includes下创建一个名为00_Modbus_Para.pmh的pmh文件。 Modbus[0].Config.ServerPort 0 Modbus[0].Config.ConnectTimeOut 6000 Modbus[0].Config.SendRecvTimeOut 0 Modbu…...

MyBatis分页插件PageHelper的使用及MyBatis的特殊符号---详细介绍

一&#xff0c;分页的概念 分页是一种将大量数据或内容分割成多个页面以便逐页显示的方式。在分页中&#xff0c;数据被分割成一定数量的页&#xff0c;每页显示一部分数据或内容&#xff0c;用户可以通过翻页或跳分页是一种将大量数据或内容分割成多个页面以便逐页显示的方式。…...

Qt(C++)计算一段程序执行经过的时间

一、前言 在许多应用程序和系统中,需要对经过的时间进行计算和记录。例如 可能想要测量某个操作的执行时间,或者记录一个过程中经过的时间以进行性能分析。在这些场景下,准确地计时是非常重要的。 Qt提供了一个功能强大的计时器类QElapsedTimer,可以方便地记录经过的时间…...

UnionTech OS(统信桌面操作系统)安装 g++ 和 cmake

文章目录 前言一、debian 10简介二、安装 g三、安装cmake参考资料 前言 统信桌面操作系统支持x86、龙芯、申威、鲲鹏、飞腾、兆芯等国产CPU平台&#xff0c;基于debian 10.x 的稳定版本&#xff0c;长期维护的统一内核版本(4.19)。 一、debian 10简介 Debian 10 是一款广泛使…...

php_webshell免杀--从0改造你的AntSword

0x00 前言&#xff1a; 为什么会有改造蚁剑的想法&#xff0c;之前看到有做冰蝎的流量加密&#xff0c;来看到绕过waf&#xff0c;改造一些弱特征&#xff0c;通过流量转换&#xff0c;跳过密钥交互。 但是&#xff0c;冰蝎需要反编译去改造源码&#xff0c;再进行修复bug&am…...

RocketMQ mqadmin java springboot python 调用笔记

命令 mqadmin命令列表 yeqiangyeqiang-MS-7B23:/opt/rocketmq-all-5.1.3-bin-release$ sh bin/mqadmin The most commonly used mqadmin commands are:updateTopic Update or create topicdeleteTopic Delete topic from broker and NameServer.…...

Java aspose 将HTML导出成Excel文件

1.需求 有一批表格的html文件&#xff0c;需要将这些表格导出成excel文件 2.代码 使用第三方库 aspose ByteArrayInputStream htmlIs new ByteArrayInputStream(htmlBuilder.toString().getBytes()); // 将html字符串构建成输入流 LoadOptions lo new LoadOptions(LoadFo…...

原生微信小程序 动态(横向,纵向)公告(广告)栏

先看一下动态效果 Y轴滚动公告的原理是swiper组件在页面中的Y轴滚动&#xff0c;属性vertical&#xff0c;其余属性也设置一下autoplay circular interval"3000" X轴滚动的原理是&#xff0c;利用动画效果&#xff0c;将内容从右往左过渡过去 wxml&#xff1a; &l…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...