当前位置: 首页 > news >正文

<深度学习基础> 激活函数

为什么需要激活函数?激活函数的作用?

  1. 激活函数可以引入非线性因素,可以学习到复杂的任务或函数。如果不使用激活函数,则输出信号仅是一个简单的线性函数。线性函数一个一级多项式,线性方程的复杂度有限,从数据中学习复杂函数映射的能力很小。
  2. 激活函数可以把当前特征空间通过一定的线性映射转换到另一个空间,让数据能够更
    好的被分类;

为什么激活函数需要非线性函数?

  1. 假若网络中全部是线性部件,那么线性的组合还是线性,与单独一个线性分类器无异。这样就做不到用非线性来逼近任意函数;
  2. 使用非线性激活函数 f ( x ) f(x) f(x),以便使网络更加强大,增加它的能力,使它可以学习复杂
    的事物,复杂的表单数据,以及表示输入输出之间非线性的复杂的任意函数映射。使用非线性
    激活函数,能够从输入输出之间生成非线性映射;

激活函数的选择

  1. 如果输出是0、1 值(二分类问题),则输出层选择sigmoid 函数,然后其它的所有单元都选择Relu 函数。
  2. 如果在隐藏层上不确定使用哪个激活函数,那么通常会使用Relu 激活函数。有时,也会使用tanh 激活函数,但Relu 的一个优点是:当是负值的时候,导数等于0。
  3. sigmoid 激活函数:除了输出层是一个二分类问题基本不会用它。
  4. tanh 激活函数:tanh 是非常优秀的,几乎适合所有场合。
  5. ReLu 激活函数:最常用的默认函数,如果不确定用哪个激活函数,就使用ReLu 或者Leaky ReLu,再去尝试其他的激活函数。

ReLu 激活函数的优点

  1. 计算更快&学习更快: ReLu 激活函数的导数都会远大于0,在程序实现就是一个if-else 语句,而sigmoid 函数需要进行浮点四则运算,在实践中,使用ReLu 激活函数神经网络通常会比使用sigmoid 或者tanh 激活函数学习的更快。
  2. 防止梯度弥散: sigmoid 和tanh 函数的导数在正负饱和区的梯度都会接近于0,这会造成梯度弥散,而Relu 和Leaky ReLu 函数大于0 部分都为常数,不会产生梯度弥散现象。
  3. 稀疏激活性: 从信号方面来看,即神经元同时只对输入信号的少部分选择性响应,大量信号被刻意的屏蔽了,这样可以提高学习的精度,更好更快地提取稀疏特征。当 x < 0 x<0 x<0 时,梯度为0,ReLU硬饱和,而当 x > 0 x>0 x>0 时,则不存在饱和问题。ReLU 能够在 x > 0 x>0 x>0 时保持梯度不衰减,从而缓解梯度消失问题。

常见的激活函数

1、Sigmod函数

f ( x ) = 1 1 + e − x f(x)= \frac {1}{1+e^{-x}} f(x)=1+ex1
Sigmoid函数

2、Relu函数

f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)
在这里插入图片描述

3、tanh函数

f ( x ) = e x − e − x e x + e − x f(x)=\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}} f(x)=ex+exexex
在这里插入图片描述

4、Leak Relu函数

f ( x ) = { α x , x < 0 x , x > 0 f(x)=\left\{ \begin{aligned} \alpha x, x<0\\ x,x>0 \\ \end{aligned} \right. f(x)={αx,x<0x,x>0
图为 α = 0.5 \alpha=0.5 α=0.5
在这里插入图片描述

5、softmax函数

softmax多用于多分类神经网络的输出
σ ( z ) j = e z j ∑ k = 1 K e z k \sigma(z)_{j}=\frac {e^{z_{j}}}{\sum _{k=1}^{K} e^{z_{k}}} σ(z)j=k=1Kezkezj

相关文章:

<深度学习基础> 激活函数

为什么需要激活函数&#xff1f;激活函数的作用&#xff1f; 激活函数可以引入非线性因素&#xff0c;可以学习到复杂的任务或函数。如果不使用激活函数&#xff0c;则输出信号仅是一个简单的线性函数。线性函数一个一级多项式&#xff0c;线性方程的复杂度有限&#xff0c;从…...

评价指标BLUE了解

BLEU (Bilingual Evaluation Understudy&#xff0c;双语评估基准&#xff09;是一组度量机器翻译和自然语言生成模型性能的评估指标。BLEU指标是由IBM公司提出的一种模型评估方法,以便在机器翻译领域中开发更好的翻译模型。BLEU指标根据生成的句子与人工参考句子之间的词、短语…...

5G网关如何提升智慧乡村农业生产效率

得益于我国持续推进5G建设&#xff0c;截至今年5月&#xff0c;我国5G基站总数已达284.4万个&#xff0c;覆盖全国所有地级市、县城城区和9成以上的乡镇镇区&#xff0c;实现“镇镇通5G”&#xff0c;全面覆盖了从城市到农村的延伸。 依托5G网络的技术优势&#xff0c;智慧乡村…...

微信小程序分享后真机参数获取不到和部分参数不能获取问题问题解决

微信小程序的很多API&#xff0c;都是BUG&#xff0c;近期开发小程序就遇到了分享后开发工具可以获取参数&#xff0c;但是真机怎么都拿不到参数的问题 一、真机参数获取不到问题解决 解决方式&#xff1a; 在onLoad(options) 中。 onLoad方法中一定要有options 这个参数。…...

Confluence使用教程(用户篇)

1、如何创建空间 可以把空间理解成一个gitlab仓库&#xff0c;空间之间相互独立&#xff0c;一般建议按照部门&#xff08;小组的人太少&#xff0c;没必要创建空间&#xff09;或者按照项目分别创建空间 2、confluence可以创建两种类型的文档&#xff1a;页面和博文 从内容上来…...

网络基础知识socket编程

目录 网络通信概述网络互连模型&#xff1a;OSI 七层模型TCP/IP 四层/五层模型数据的封装与拆封 IP 地址IP 地址的编址方式IP 地址的分类特殊的IP 地址如何判断2 个IP 地址是否在同一个网段内 TCP/IP 协议TCP 协议TCP 协议的特性TCP 报文格式建立TCP 连接&#xff1a;三次握手关…...

基于SpringBoot的员工(人事)管理系统

基于SpringBoot的员工&#xff08;人事&#xff09;管理系统 一、系统介绍二、功能展示三.其他系统实现五.获取源码 一、系统介绍 项目名称&#xff1a;基于SPringBoot的员工管理系统 项目架构&#xff1a;B/S架构 开发语言&#xff1a;Java语言 前端技术&#xff1a;BootS…...

【计算机网络】序列化与反序列化

文章目录 1. 如何处理结构化数据&#xff1f;序列化 与 反序列化 2. 实现网络版计算器1. Tcp 套接字的封装——sock.hpp创建套接字——Socket绑定——Bind将套接字设置为监听状态——Listen获取连接——Accept发起连接——Connect 2. 服务器的实现 ——TcpServer.hpp初始化启动…...

Linux内核学习(七)—— 定时器和时间管理(基于Linux 2.6内核)

目录 一、内核中的时间概念 二、节拍率&#xff1a;HZ 实时时钟 系统定时器 三、定时器 系统定时器是一种可编程硬件芯片&#xff0c;能以固定频率产生定时器中断&#xff0c;它所对应的中断处理程序负责更新系统时间&#xff0c;也负责执行需要周期性运行的任务。 一、内…...

Tortoise Git(乌龟git)常用命令总结

查看全局和本地 Git 配置 打开命令行终端&#xff08;如 Git Bash&#xff09;&#xff0c;分别执行以下命令查看全局和本地的 Git 配置信息&#xff1a; git config --global -l git config --local -l确保配置中没有任何与 SSH 相关的设置 移除全局和本地 SSH 相关配置&…...

SSM商城项目实战:物流管理

SSM商城项目实战&#xff1a;物流管理 在SSM商城项目中&#xff0c;物流管理是一个重要的功能模块。通过物流管理&#xff0c;可以实现订单的配送、运输和签收等操作。本文将介绍如何在SSM商城项目中实现物流管理功能的思路和步骤代码。 实现SSM商城项目中物流管理的思路总结如…...

nlp系列(7)三元组识别(Bert+CRF)pytorch

模型介绍 在实体识别中&#xff1a;使用了Bert模型&#xff0c;CRF模型 在关系识别中&#xff1a;使用了Bert模型的输出与实体掩码&#xff0c;进行一系列变化&#xff0c;得到关系 Bert模型介绍可以查看这篇文章&#xff1a;nlp系列&#xff08;2&#xff09;文本分类&…...

Druid配置类、Dubbo配置类、Captcha配置类、Redis配置类、RestTemplate配置类

DruidConfig配置类package com.xdclass.app.config;import com.alibaba.druid.pool.DruidDataSource; import com.alibaba.druid.support.http.StatViewServlet; import com.alibaba.druid.support.http.WebStatFilter; import org.springframework.beans.factory.annotation.V…...

Pyecharts教程(十二):使用pyecharts创建带有数据缩放滑块和位置指示器的K线图

Pyecharts教程(十二):使用pyecharts创建带有数据缩放滑块和位置指示器的K线图 作者:安静到无声 个人主页 目录 Pyecharts教程(十二):使用pyecharts创建带有数据缩放滑块和位置指示器的K线图前言代码讲解总结完整代码推荐专栏前言 本博客将详细解释如何使用Python中的pyech…...

MySQL 基本操作

目录 数据库的列类型 数据库基本操作 SQL语言规范 SQL语句分类 查看表&#xff0c;使用表 管理数据库 创建数据库和表 删除数据库和表 向数据表中添加数据 查询数据表中数据 修改数据表的数据 删除数据表中数据 修改表明和表结构 扩展表结构&#xff08;增加字段&…...

HHDESK一键改密功能

HHDESK新增实用功能——使用SSH连接&#xff0c;对服务器/端口进行密码修改。 1 测试 首页点击资源管理——客户端&#xff0c;选择需要修改的连接&#xff1b; 可以先对服务器及端口进行测试&#xff0c;看是否畅通&#xff1b; 右键——测试——ping&#xff1b; 以及右…...

瞬态电压抑制器(TVS)汽车级 SZESD9B5.0ST5G 工作原理、特性参数、封装形式

什么是汽车级TVS二极管&#xff1f; TVS二极管是一种用于保护电子电路的电子元件。它主要用于电路中的过电压保护&#xff0c;防止电压过高而损坏其他部件。TVS二极管通常被称为“汽车级”是因为它们能够满足汽车电子系统的特殊要求。 在汽车电子系统中&#xff0c;由于车辆启…...

ChatGPT 一条命令总结Mysql所有知识点

想学习Mysql的同学,可以使用ChatGPT直接总结mysql所有的内容与知识点大纲 输入 总结Mysql数据库所有内容大纲与大纲细分内容 ChatGPT不光生成内容,并且直接完成了思维导图。 AIGC ChatGPT ,BI商业智能, 可视化Tableau, PowerBI, FineReport, 数据库Mysql Oracle, Offi…...

Nginx-报错no live upstreams while connecting to upstream

1、问题描述 生产环境Nginx间歇性502的事故分析过程 客户端请求后端服务时一直报错 502 bad gateway&#xff0c;查看后端的服务是正常启动的。后来又查看Nginx的错误日志&#xff0c;发现请求后端接口时Nginx报错no live upstreams while connecting to upstream&#xff0c…...

五种 CSS 位置类型以实现更好的布局

在 Web 开发中&#xff0c;CSS&#xff08;层叠样式表&#xff09;用于设置网站样式的设置。为了控制网页上元素的布局&#xff0c;使用CSS的position属性。因此&#xff0c;在今天这篇文章中&#xff0c;我们将了解 CSS 位置及其类型。 CSS 位置属性用于控制网页上元素的位置…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...