当前位置: 首页 > news >正文

Python计算加速利器

2ba2b7b1ec86b8d687a7fc5e3d0aae50.png

迷途小书童的 Note

读完需要

6

分钟

速读仅需 2 分钟

1

   

简介

Python 是一门应用非常广泛的高级语言,但是,长久以来,Python的运行速度一直被人诟病,相比 c/c++、java、c#、javascript 等一众高级编程语言,完全没有优势。

那么真的没有办法提升 Python 程序的运行速度吗?相信看完本文,你应该会有答案。

2

   

示例

这里以找出 1000000 以内的质数为例,分别计算下需要花费多长的时间?

首先来回顾下什么是质数?

质数(Prime number),又称素数,指在大于 1 的自然数中,除了 1 和该数本身外,无法被其他自然数整除(也可定义为只有 1 与该数本身两个因数)。举个例子,比如说数字 7,从 2 开始一直到 6,都不能被它整除,只有 1 和它本身 7 才能被 7 整除,所以 7 就是一个质数。

下面来看看 python 的代码实现

import math
import timedef is_prime(num):if num == 2:return Trueif num <= 1 or not num % 2:return False# 从3开始,到int(根号num)+1,步长是2,如3,5,7 ...for i in range(3, int(math.sqrt(num)) + 1, 2):if not num % i:return Falsereturn Truedef run_program(N):for i in range(N):is_prime(i)if __name__ == '__main__':N = 1000000start = time.time()run_program(N)end = time.time()print(end - start)

执行代码,可以看到在我的老旧 i5 机器上总共花费了 5 秒多

cc337f17258677d8f6138383b8a80820.png

3

   

改进

大家都知道解释型语言,解释器不产生目标机器代码,而是产生中间代码,解释器通常会导致执行效率较低。

因此,问题就变成了,能不能将 python 代码翻译成机器码?那执行效率肯定就会大大提升了

numba 就是这么一款工具,它是 python 的即时编译器(just-in-time compiler),它使用 LLVM 将 python 代码翻译成机器码,特别是在使用 numpy 数组以及循环操作上,效果最佳。

numba 的使用比较简单,我们不需要更换 python 的解释器,只需要将 numba 的装饰器写在 python 方法上,当这个带有 numba 装饰器的方法被调用时,就会被 just-in-time 即时编译为机器代码,然后执行。目前 numba 支持在 X86、ARM 等多种架构上进行动态编译。

使用 numba 之前,我们需要安装这个库

pip install numba或者
conda install numba

下面来看看 numba 版本的质数问题

import math
import time
from numba import njit@njit(fastmath=True, cache=True)
def is_prime(num):if num == 2:return Trueif num <= 1 or not num % 2:return Falsefor i in range(3, int(math.sqrt(num)) + 1, 2):if not num % i:return Falsereturn True@njit(fastmath=True, cache=True)
def run_program(N):for i in range(N):is_prime(i)if __name__ == '__main__':N = 10000000start = time.time()run_program(N)end = time.time()print(end - start)

执行上述代码,可以看到,速度提升了 4 倍左右,不到 1 秒,效果还是非常明显

27db7e14b4eee05f434aaf4143d21b73.png

最后,作为横向比较,我们使用 c++ 语言,也写一个类似的程序

#include <iostream>
#include <cmath>
#include <time.h>using namespace std;bool isPrime(int num)
{if (num == 2) return true;if (num <= 1 || num % 2 == 0) return false;double sqrt_num = sqrt(double(num));for (int i = 3; i <= sqrt_num; i += 2) {if (num % i == 0) return false;}return true;
}int main()
{int N = 1000000;clock_t start, end;start = clock();for (int i=0; i < N; i++) isPrime(i);end = clock();cout << (end - start) / ((double)CLOCKS_PER_SEC);return 0;
}

编译后执行,可以看到,只花了 0.4 秒

bd722fb89ff42861b03cb2d5a3a47ed5.png

4

   

小结

从上面的对比示例中可以看到,使用了 just-in-time compiler 后(numba、pypy 都是类似的实现),代码的执行效率已经直逼 C++ 等编译型语言了。

5

   

参考资料

  • https://numba.readthedocs.io/en/stable/index.html ( https://numba.readthedocs.io/en/stable/index.html )

6

   

免费社群

d0fe77a07144be506f06b8aa786f6184.jpeg

相关文章:

Python计算加速利器

迷途小书童的 Note 读完需要 6分钟 速读仅需 2 分钟 1 简介 Python 是一门应用非常广泛的高级语言&#xff0c;但是&#xff0c;长久以来&#xff0c;Python的运行速度一直被人诟病&#xff0c;相比 c/c、java、c#、javascript 等一众高级编程语言&#xff0c;完全没有优势。 那…...

PyTorch 深度学习实践 第10讲刘二大人

总结&#xff1a; 1.输入通道个数 等于 卷积核通道个数 2.卷积核个数 等于 输出通道个数 1.单通道卷积 以单通道卷积为例&#xff0c;输入为&#xff08;1,5,5&#xff09;&#xff0c;分别表示1个通道&#xff0c;宽为5&#xff0c;高为5。假设卷积核大小为3x3&#xff0c…...

Linux特殊指令

目录 1.dd命令 2.mkfs格式化 3.df命令 4.mount实现硬盘的挂载 5.unshare 1.dd命令 dd命令可以用来读取转换并输出数据。 示例一&#xff1a; if表示infile&#xff0c;of表示outfile。这里的/dev/zero是一个特殊文件&#xff0c;会不断产生空白数据。 bs表示复制一块的大…...

MPI之主从模式的一般编程示例

比如&#xff0c;我们可以选举0号进程为master进程&#xff0c;其余进程为slaver进程 #include "mpi.h" #include <unistd.h> #include <iostream>int main(int argc, char *argv[]) {int err MPI_Init(&argc,&argv);int rank,size;MPI_Comm_r…...

基于野狗算法优化的BP神经网络(预测应用) - 附代码

基于野狗算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于野狗算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.野狗优化BP神经网络2.1 BP神经网络参数设置2.2 野狗算法应用 4.测试结果&#xff1a;5.Matlab代码 摘要…...

C语言面向对象的编程思想

面向对象编程 面向对象编程Object-Oriented Programming&#xff0c;OOP&#xff09; 作为一种新方法&#xff0c;其本质是以建立模型体现出来的抽象思维过程和面向对象的方法。模型是用来反映现实世界中事物特征的。任何一个模型都不可能反映客观事物的一切具体特征&#xff0…...

MPI之非阻塞通信中通信完成检测接口简介

在之前的文章中&#xff0c;简单的写了一个非阻塞的通信代码介绍最最基本的使用&#xff1a; int main(int argc, char *argv[]) {int err MPI_Init(&argc,&argv);int rank,size;MPI_Comm_rank(MPI_COMM_WORLD,&rank);MPI_Comm_size(MPI_COMM_WORLD, &size);…...

Excel:如何实现分组内的升序和降序?

一、POWER 1、构建辅助列D列&#xff0c;在D2单元格输入公式&#xff1a; -POWER(10,COUNTA($A$2:A2)3)C2 2、选中B1:D10&#xff0c;注意不能宣导A列的合并单元格&#xff0c;进行以下操作&#xff1a; 3、删除辅助列即可 二、COUNTA 第一步&#xff0c;D2建立辅助列&#xf…...

深度学习论文: Segment Any Anomaly without Training via Hybrid Prompt Regularization

深度学习论文: Segment Any Anomaly without Training via Hybrid Prompt Regularization Segment Any Anomaly without Training via Hybrid Prompt Regularization PDF: https://arxiv.org/pdf/2305.10724.pdf PyTorch代码: https://github.com/shanglianlm0525/CvPytorch Py…...

【算法训练-字符串】一 最长无重复子串

废话不多说&#xff0c;喊一句号子鼓励自己&#xff1a;程序员永不失业&#xff0c;程序员走向架构&#xff01;本篇Blog的主题是最长无重复子串或最长无重复子数组&#xff0c;这类题目出现频率还是很高的。 最长无重复子串【MID】 先来看字符串数据结构的题目 题干 解题思…...

【数据结构】手撕顺序表

一&#xff0c;概念及结构 顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构&#xff0c;一般情况下采用数组存储&#xff1b; 在数组上完成数据的增删查改。 1&#xff0c; 静态顺序表&#xff1a;使用定长数组存储元素。 2.&#xff0c;动态顺序表&#xff1…...

景联文科技数据标注:人体关键点标注用途及各点的位置定义

人体关键点标注是一种计算机视觉任务&#xff0c;指通过人工的方式&#xff0c;在指定位置标注上关键点&#xff0c;例如人脸特征点、人体骨骼连接点等&#xff0c;常用来训练面部识别模型以及统计模型。这些关键点可以表示图像的各个方面&#xff0c;例如角、边或特定特征。在…...

typescript基础之never

TypeScript 的 never 类型是一种特殊的类型&#xff0c;它表示的是那些永远不存在的值的类型。例如&#xff0c;一个抛出异常或无限循环的函数的返回值类型就是 never&#xff0c;因为它们永远不会返回任何值。never 类型是所有类型的子类型&#xff0c;也就是说&#xff0c;任…...

电子电路学习笔记之NCP304LSQ37T1G ——超低电流电压检测器

超低电流电压检测器是一种专门用于检测极小电流值的设备。它们常用于电子元件或电路中&#xff0c;用于监测电流的存在和程度。这些检测器通常具有高灵敏度和高精度&#xff0c;能够测量微安级别或更小的电流。 超低电流电压检测器的应用领域广泛&#xff0c;例如电池管理系统…...

【计算机组成原理】一文快速入门,很适合JAVA后端看

作者简介&#xff1a; CSDN内容合伙人、CSDN新星计划导师、JAVA领域优质创作者、阿里云专家博主&#xff0c;计算机科班出身、多年IT从业经验、精通计算机核心理论、Java SE、Java EE、数据库、中间件、分布式技术&#xff0c;参加过国产中间件的核心研发&#xff0c;对后端有…...

10万字智慧政务大数据平台项目建设方案222页[Word]

导读:原文《10万字智慧政务大数据平台项目建设方案222页[Word]》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。 1.1 项目建设目标 推进市一级政府搭建数字政府建设的规划要求,结合市一级政府“互联网+政务服务”建设…...

Python-主线程控制子线程-4

需求&#xff1a;在Python-主线程控制子线程-3的基础上&#xff0c;新增使用UDP接收指令功能&#xff0c;代替从键盘输入指令 # 修改后的程序&#xff0c;主线程可以获取子线程的结果 import threading import time import queue import tracebackfrom loguru import logger i…...

设计模式二十二:策略模式(Strategy Pattern)

定义一系列算法&#xff0c;将每个算法封装成独立的对象&#xff0c;并使这些对象可互相替换。这使得在运行时可以动态地选择算法&#xff0c;而不必改变使用算法的客户端代码。策略模式的主要目标是将算法的定义与使用分离&#xff0c;使得客户端可以根据需要灵活地选择和切换…...

【c语言】结构体内存对齐,位段,枚举,联合

之前学完结构体&#xff0c;有没有对结构体的大小会很疑惑呢&#xff1f;&#xff1f;其实结构体在内存中存储时会存在内存对齐&#xff0c;捎带讲讲位段&#xff0c;枚举&#xff0c;和联合&#xff0c;跟着小张一起学习吧 结构体内存对齐 结构体的对齐规则: 第一个成员在与结…...

干货丨软件测试行业迎来新时代,AI将成为主流技术?

随着科技日新月异的发展&#xff0c;人工智能正逐渐渗透到我们生活的各方各面&#xff0c;从智能语音助手到自动驾驶汽车、从智能家居到人脸识别技术&#xff0c;AI正以其卓越的智能和学习能力引领着新时代的发展方向。 在这个快速演进的时代中&#xff0c;软件测试领域也受到了…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...