当前位置: 首页 > news >正文

关于SAM中decomposed Relative Positional Embeddings的理解

关于SAM中decomposed Relative Positional Embeddings的理解。

relative positional embedding的一种实现方式是:先计算q和k的相对位置坐标,然后依据相对位置坐标从给定的table中取值。以q和k都是7×7为例,每个相对位置有两个索引对应x和y两个方向,每个索引值的取值范围是[-6,6]。(第0行相对第6行,x索引相对值为-6;第6行相对第0行,x索引相对值为6;所以索引取值范围是[-6,6])。这个时候可以构建一个shape为[13,13, head_dim]的table,则当相对位置为(i,j)时,position embedding=table[i, j]。(i,j的取值范围都是[0, 12])具体可参考:有关swin transformer相对位置编码的理解

decomposed Relative Positional Embeddings的思想在于,分别计算x和y两个方向上计算相对位置坐标,并分别从两个table中取出对应的位置编码,再将两个方向的编码相加作为最终的编码。

以q为4×4和k是4×4为例,在x和y方向上,每个索引值的取值范围是[-3,3],所以需要构建两个shape为[7, head_dim]的table:

if use_rel_pos:assert (input_size is not None), "Input size must be provided if using relative positional encoding."# initialize relative positional embeddingsrel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))

然后依据q和k的shape来计算每个方向上对应的相对位置编码:

def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:# q_size和k_size分别为当前方向上,q和k的个数, rel_pos为当前方向上定义的tableq_coords = torch.arange(q_size)[:, None] # shape: [4, 1],给当前方向上每个q编号k_coords = torch.arange(k_size)[None, :]  # shape:[1, 4],给当前方向上每个k编号relative_coords = (q_coords - k_coords) + (k_size - 1) # q_coords - k_coords就是当前方向上每个q相对于k的位置,加上k_size - 1是为了让相对位置非负return rel_pos[relative_coords.long()] # 依据相对位置从预定义好的table中取值

依据q和每个方向上对应的位置编码来计算最终的编码:

    q_h, q_w = q_sizek_h, k_w = k_sizeRh = get_rel_pos(q_h, k_h, rel_pos_h) # 获取h方向的位置编码,shape:[4, 4, head_dim]Rw = get_rel_pos(q_w, k_w, rel_pos_w) # 获取w方向的位置编码,shape:[4, 4, head_dim]B, _, dim = q.shaper_q = q.reshape(B, q_h, q_w, dim)rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) # r_q与Rh在h方向矩阵乘rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)# attn是自注意力机制计算得到的注意力图attn = attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view(B, q_h * q_w, k_h * k_w)return attn

相关文章:

关于SAM中decomposed Relative Positional Embeddings的理解

关于SAM中decomposed Relative Positional Embeddings的理解。 relative positional embedding的一种实现方式是:先计算q和k的相对位置坐标,然后依据相对位置坐标从给定的table中取值。以q和k都是77为例,每个相对位置有两个索引对应x和y两个…...

1、Spring是什么?

Spring 是一款主流的 Java EE 轻量级开源框架 。 框架 你可以理解为是一个程序的半成品,它帮我们实现了一部分功能,用这个框架我们可以减少代码的实现和功能的开发。 开源 也就是说,它开放源代码。通过源代码,你可以看到它是如何…...

【华为OD机试python】阿里巴巴找黄金宝箱(IV)【2023 B卷|200分】

题目描述 一贫如洗的樵夫阿里巴巴在去砍柴的路上,无意中发现了强盗集团的藏宝地, 藏宝地有编号从0-N的箱子,每个箱子上面有一个数字,箱子排列成一个环, 编号最大的箱子的下一个是编号为0的箱子。 请输出每个箱子贴的数字之后的第一个比它大的数,如果不存在则输出-1。 输入…...

操作系统复习总结5

操作系统复习总结,仅供笔者复习使用,参考教材: 《操作系统原理》 - 何静媛编著. 西安电子科技大学出版社《操作系统考研复习指导》2024年 - 王道论坛组编. 电子工业出版社 本文主要内容为:输入输出管理; 计算机系统…...

【LeetCode】406.根据身高重建队列

题目 假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。 请你重新构造并返回输入数组…...

渗透测试漏洞原理之---【任意文件包含漏洞】

文章目录 1、文件包含概述1.1 文件包含语句1.1.1、相关配置 1.2、动态包含1.2.1、示例代码1.2.2、本地文件包含1.2.3、远程文件包含 1.3、漏洞原理1.3.1、特点 2、文件包含攻防2.1、利用方法2.1.1、包含图片木马2.1.2、读取敏感文件2.1.3、读取PHP文件源码2.1.4、执行PHP命令2.…...

day28 异常

to{}catch{} try{}catch{}的流传输 try {fis new FileInputStream("file-APP\\fos.txt");fos new FileOutputStream("fos.txt");int a ;while ((a fis.read())! -1){fos.write(a);}System.out.println(a); } catch (IOException e) {e.printStackTrace()…...

Pico使用C/C++选择使用哪个I2C控制器,以及SDA和SCL针脚

本文一开始讲述了解决方案,后面是我做的笔记,用来讲述我的发现流程和探究的 Pico I2C 代码结构。 前提知识 首先要说明一点:Pico 有两个 I2C,也就是两套 SDA 和 SCL。这点你可以在针脚图中名字看出,比如下图的 Pin 4…...

C++动态内存管理

动态内存 在C/C程序中(线程)栈空间是有限的,大部分变量使用的都是动态分配来的堆内存,这些动态申请来的堆内存是需要开发者通过代码去自行管理的。如何管理好这些动态申请来的内存,是C/C开发中的一个重点难点问题。 m…...

SpringBoot—日志

目录 日志使用日志日志级别设置日志级别设置分组指定日志文件路径日志切割归档使用第三方日志框架log4j2配置文件【分级存储】logback配置文件【分级存储】 实例代码 日志 使用日志 给controller添加日志信息 要给controller类上添加Slf4j注解,然后使用log.info(…...

如何在,Linux中安装Luajit2.*

1.文件下载The LuaJIT Project 2.将下载文件上传到对应的服务器:例如/opt 3.进入对应的文件夹 4.make PREFIX/usr/local,设置安装路径 5.make install,编译安装 6.进入安装目录,cd /usr/local/include/luajit-2.0 7.luajit -v…...

单片机-如何让数码管动态显示

数码管硬件图 1、数码管 连接 74HC245 芯片 单片机IO口输出难稳定,需要数码管与单片机连接需要增加驱动电路, 使用 74HC245 abcdefgDP并联导出 74HC245 对数码管进行驱动,P0 是输出电流 来驱动各个段的 驱动芯片 增加电阻 是为了防止电流…...

在Visual Studio 2017上配置并使用OpenGL

1 在Visual Studio 2017上配置并使用OpenGL 在GLUT - The OpenGL Utility Toolkit:GLUT - The OpenGL Utility Toolkit中点击“GLUT for Microsoft Windows 95 & NT users”,选择“If you want just the GLUT header file, the .LIB, and .DLL file…...

【C++】多态学习

多态 多态的概念与定义多态的概念构成多态的两个条件虚函数与重写重写的两个特例 final 和 override重载、重写(覆盖)、重定义(隐藏)的对比抽象类多态的原理静态绑定与动态绑定 单继承与多继承关系下的虚函数表(派生类)单继承中的虚函数表查看多继承中的虚函数表查看 菱形继承与…...

大数据之Maven

一、Maven的作用 作用一:下载对应的jar包 避免jar包重复下载配置,保证多个工程共用一份jar包。Maven有一个本地仓库,可以通过pom.xml文件来记录jar所在的位置。Maven会自动从远程仓库下载jar包,并且会下载所依赖的其他jar包&…...

自制centos7.9的wsl发行版

自制centos7.9的wsl发行版 参考:https://zhuanlan.zhihu.com/p/482538727 Windows10提供了一个wsl工具用于直接在windows上运行Linux子系统。 CentOS国内镜像下载:https://mirrors.aliyun.com/centos/ 这里选择了7.9.2009版本:https://mirr…...

使用VisualStudio制作上位机(五)

文章目录 使用VisualStudio制作上位机(五)第四部分:GUI界面数据显示使用VisualStudio制作上位机(五) Author:YAL 第四部分:GUI界面数据显示 这一部分,主要实现GUI的界面显示。 上一文已经实现了CAN数据的接收,并将数据更新到数组里。所以在做界面的显示时,只需要在…...

ChatGPT在医疗领域可应用于改善与患者的沟通

注意:本信息仅供参考,发布该内容旨在传递更多信息的目的,并不意味着赞同其观点或证实其说法。 自从ChatGPT在2022年末对公众开放以来,OpenAI的这款生成式AI聊天机器人在医疗领域展示出了巨大潜力。它已经通过了美国医学执照考试&a…...

直播预告|博睿学院第四季即将开讲:博睿数据资深运维团队现身说法!

博睿学院第四季开讲啦!本季博睿学院的课程将于本周四(8月31日)16点正式启动。本季我们邀请到了博睿数据平台支撑中心的四位资深运维专家现身说法,来为我们分享一体化智能可观测平台Bonree ONE的实践干货。 他们,见多识…...

端到端自动驾驶综述

End-to-end Autonomous Driving: Challenges and Frontiers 文章脉路 Introduction 从经典的模块化的方法到端到端方法的一个对比, 讲了各自的优缺点, 模块化的好处是各个模块都有自己明确的优化的目标, 可解释性较强, 且容易debug, 缺点是各个模块优化的目标并不是最终的驾…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...