当前位置: 首页 > news >正文

DEAP库文档教程五----计算统计

本小结将重点围绕模型在计算统计方面的问题,进行详细的论述

1、Computing Statistics

通常情况下,我们想要在优化过程中编辑数据。Statistic模块可以在任何设计好的目标上改变一些本不可改变的数据。为了达到这个目的,需要使用与工具箱中完全相同的语法在静态数据中注册统计函数。

states = tools.Statistics(key = lambda ind : ind.fitness.values)

使用key的第一个参数作为统计对象。这个key必须支持一个可以在之后被应用到数据上的函数从而得到统计结果。之前的例子使用了fitness.values()中每一个元素的属性。 

states.register('avg', numpy.mean)
states.register('std', numpy.std)
states.register('min', numpy.min)
states.register('max', numpy.max)

2、Predefined Algorithms -预定义算法

当使用一个预定义的算法时,例如esSimple()/eaMuPlusLambada()/eaMuCommaLambda()/eaGenerateUpdata(),之前创建的统计目标可以作为算法的属性。

pop, logbook = algorithms.esSimple(pop, toolbox, cxpb = 0.5, mutpb = 0.2, 
ngen = 0, stats = stats, verbose = True)

统计将会在每一次迭代中自动的进行计算。详细参数在优化过程中会打印在屏幕上。一旦算法返回,最终的种群和一个logbook将会返回。在下一节可以看到更详细的信息。

3、Writing Your Own Algorithm

这种情况主要是解决不是直接调用的模块函数,就是函数式自己编写的情况下,我们如何记录结果数据

当编写自己的算法时,包含统计时十分简单的。只需要去在需要的目标上编写统计。例如,在一个给定种群上编写统计需要调用compile()方法完成。

record = stats.compile(pop)
compile--编译 

这些用于编辑函数的属性必须在一个迭代元素中,这样这些key才会被调用。这里,我们的种群(pop)包含了许多个体。统计目标将会在每一个个体上调用key函数获取fitness.values属性的值。这个结果数组的值最终会给到每一个统计函数并且将结果输入到record字典中,每一个key都会与相应的函数相关联。

4、Multi-objective Statistics

正如统计可以通过numpy函数直接进行计算,所有的目标将会通过默认numpy的属性联合在一起。接下来,一个需要明确的事情是每一个axis的操作。这会通过给予axis一个额外的属性作为注册函数达成。

stats = tools.Statistics(key=lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean, axis=0)
stats.register("std", numpy.std, axis=0)
stats.register("min", numpy.min, axis=0)
stats.register("max", numpy.max, axis=0)

5、Logging Data

一旦数据通过统计产生,我们可以使用Logbook对它进行存储。Logbook是用来
按时间顺序排列的条目(如字典)。它会直接兼容数据类型并且返回统计目标,但是不会被数据限制。实际上,任何东西都可以包含在日志的条目中。

logbook = tools.Logbook()
logbook.record(gen=0, evals=30, **record)

6、Some Plotting Sugar

在优化过程中最常用的操作就是在图中显示进化过程。Logbook可以有效地执行这一操作。使用选择方法,我们可以调用需要的数据并且使用matplotlib去绘制图形。

gen = logbook.select("gen")
fit_mins = logbook.chapters["fitness"].select("min")
size_avgs = logbook.chapters["size"].select("avg")import matplotlib.pyplot as pltfig, ax1 = plt.subplots()
line1 = ax1.plot(gen, fit_mins, "b-", label="Minimum Fitness")
ax1.set_xlabel("Generation")
ax1.set_ylabel("Fitness", color="b")
for tl in ax1.get_yticklabels():tl.set_color("b")ax2 = ax1.twinx()
line2 = ax2.plot(gen, size_avgs, "r-", label="Average Size")
ax2.set_ylabel("Size", color="r")
for tl in ax2.get_yticklabels():tl.set_color("r")lns = line1 + line2
labs = [l.get_label() for l in lns]
ax1.legend(lns, labs, loc="center right")plt.show()

相关文章:

DEAP库文档教程五----计算统计

本小结将重点围绕模型在计算统计方面的问题,进行详细的论述 1、Computing Statistics 通常情况下,我们想要在优化过程中编辑数据。Statistic模块可以在任何设计好的目标上改变一些本不可改变的数据。为了达到这个目的,需要使用与工具箱中完…...

新型安卓恶意软件使用Protobuf协议窃取用户数据

近日有研究人员发现,MMRat新型安卓银行恶意软件利用protobuf 数据序列化这种罕见的通信方法入侵设备窃取数据。 趋势科技最早是在2023年6月底首次发现了MMRat,它主要针对东南亚用户,在VirusTotal等反病毒扫描服务中一直未被发现。 虽然研究…...

【AI数字人】如何基于DINet+Openface自训练AI数字人

文章目录 OpenFace环境配置提取特征特征处理DINet推理数据前处理训练frame training stageclip training stage参考DINet训练/推理过程中需要用到OPenFace的人脸数据,所以使用DINet训练定制数字人,需要配置OPenFace和DINet两个项目的环境。我是使用conda创建了一个dinet的虚拟…...

Stable Diffusion 多视图实践

此教程是基于秋叶的webui启动器 1.Stable Diffsuion 使用多视图需要准备一个多角度open pose 图 我给大家提供一个可使用的。 2.需要添加图片到到controlnet当中,不要选择预处理器,选择模型为openpose的模型,然后需要点选同步图片尺寸。 3.然后填写关键字可以参照一下这个…...

【实操干货】如何开始用Qt Widgets编程?(四)

Qt 是目前最先进、最完整的跨平台C开发工具。它不仅完全实现了一次编写,所有平台无差别运行,更提供了几乎所有开发过程中需要用到的工具。如今,Qt已被运用于超过70个行业、数千家企业,支持数百万设备及应用。 在本文中&#xff0…...

解决window安装docker报错问题

第一次打开Docker Desktop后提示错误 试了网上版本都没用,后面发现是电脑没有下载相关虚拟机: 先点击链接下载wsl2,下载后命令行执行:dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /…...

茄子科技面试题

1、RPC的重要组成有哪些? 客户端(Client):发起RPC请求的部分。客户端包含代表远程过程的存根(stub),它提供与本地过程相同的接口。 服务器(Server):接受RPC请…...

postgis数据库导出csv表再导入postgis

1、导出csv表 from settings_Address import * from sqlalchemy import create_engine, MetaData import pandas as pd def create_conn(Postgis_user,Postgis_password,Postgis_host,Postgis_port,dbname_PG):# return create_engine(PostgispyPostgis://{}:{}{}:{}/{}.forma…...

MySQL 特殊字符

文章目录 1.注释符2.字符串符3.反引号4.模式匹配通配符转义符 参考文献 1.注释符 SQL 注释是用来在 SQL 语句中添加对代码的解释说明。SQL 支持两种类型的注释符号。 单行注释:使用两个连续的减号(–)表示。减号后面的内容将被视为注释&…...

Chrome自动升级了,找不到最新版本的webdriver怎么办?

Chrome自动升级了,找不到最新版本的webdriver怎么办? 背景解决办法 背景 我用Selenium开发了Facebook和Linkedin爬虫,有些新需求要调一下,今天启动selenium时有报错,报错如下:selenium.common.exceptions.SessionNotCreatedExce…...

网络编程套接字(3): 简单的TCP网络程序

文章目录 网络编程套接字(3)4. 简单的TCP网络程序4.1 服务端创建(1) 创建套接字(2) 绑定端口(3) 监听(4) 获取新连接(5) 处理读取与写入 4.2 客户端创建(1)连接服务器 4.3 代码编写(1) v1__简单发送消息(2) v2_多进程版本(3) v3_多线程版本(4) v4_线程池版本 网络编程套接字(3)…...

springMVC之拦截器

文章目录 前言一、拦截器的配置二、拦截器的三个抽象方法三、多个拦截器的执行顺序总结 前言 拦截器 一、拦截器的配置 SpringMVC中的拦截器用于拦截控制器方法的执行 SpringMVC中的拦截器需要实现HandlerInterceptor SpringMVC的拦截器必须在SpringMVC的配置文件中进行配置&…...

docker搭建个人网盘和私有仓库Harbor

目录 1、使用mysql:5.7和 owncloud 镜像,构建一个个人网盘 2、安装搭建私有仓库 Harbor 1、使用mysql:5.7和owncloud,构建一个个人网盘 1.拉取mysql:5.6镜像,并且运行mysql容器 [rootnode8 ~]# docker pull mysql:5.7 [rootnode8 ~]# doc…...

智慧排水监测系统,科技助力城市排水治理

城市里,人们每天通过道路通行,人多,路窄,都会拥堵。同样,下雨天,雨水通过雨篦汇集、管道输送,最终排出去,当雨水过大,或者管道过窄,或者管道不通畅&#xff0…...

部署java程序的服务器cpu过高如何排查和解决

1.top命令找到占用CPU高的Java进程PID 2.根据进程ID找到占用CPU高的线程 ps -mp pid -o THREAD,tid | sort -r ps -mp 124682 -o THREAD,tid | sort -r 3.将指定的线程ID输出为16进制格式 printf “%x\n” tid printf "%x\n" 6384 18f0 4.jstack pid |…...

合宙Air724UG LuatOS-Air LVGL API控件--按钮 (Button)

按钮 (Button) 按钮控件,这个就不用多说了,界面的基础控件之一。 示例代码 – 按键回调函数 event_handler function(obj, event) if event lvgl.EVENT_CLICKED then print(“Clicked\n”) elseif event lvgl.EVENT_VALUE_CHANGED then print(“To…...

new/delete与malloc/free的区别

new/delete与malloc/free的区别 new、delete是C中的操作符,而malloc、free是标准库函数。 new 和 delete 是类型安全的,它们能够根据要分配的对象类型进行内存分配和释放,并调用相应的构造函数和析构函数。而 malloc 和 free 则是无类型的&am…...

QT listWidget 中实现元素的自由拖拽

QListWIdget中拖拽元素移动 setMovement(QListView::Movement::Free);setDragEnabled(true); setDragDropMode(DragDropMode::DragDrop); setDefaultDropAction(Qt::DropAction::MoveAction);...

ChatGPT AIGC 完成二八分析柏拉图的制作案例

我们先让ChatGPT来总结一下二八分析柏拉图的好处与优点 同样ChatGPT 也可以帮我们来实现柏拉图的制作。 效果如下: 这样的按年份进行选择的柏拉图使用前端可视化的技术就可以实现。 如HTML,JS,Echarts等,但是代码可以让ChatGPT来做,生成。 在ChatGPT中给它一个Prompt …...

Python 分析HTTP的可靠性

在这篇文章中,我们将介绍如何使用 Python 来分析代理服务提供商的可靠性。代理服务在许多场景中都非常有用,例如突破地理限制、保护隐私和提高网络安全性。然而,并非所有的代理服务提供商都是可靠的。因此,我们将使用 Python 来测…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 ​ 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

大话软工笔记—需求分析概述

需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

【位运算】消失的两个数字(hard)

消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线, n r n_r nr​ 根接收天线的 MIMO 系…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...