当前位置: 首页 > news >正文

DEAP库文档教程五----计算统计

本小结将重点围绕模型在计算统计方面的问题,进行详细的论述

1、Computing Statistics

通常情况下,我们想要在优化过程中编辑数据。Statistic模块可以在任何设计好的目标上改变一些本不可改变的数据。为了达到这个目的,需要使用与工具箱中完全相同的语法在静态数据中注册统计函数。

states = tools.Statistics(key = lambda ind : ind.fitness.values)

使用key的第一个参数作为统计对象。这个key必须支持一个可以在之后被应用到数据上的函数从而得到统计结果。之前的例子使用了fitness.values()中每一个元素的属性。 

states.register('avg', numpy.mean)
states.register('std', numpy.std)
states.register('min', numpy.min)
states.register('max', numpy.max)

2、Predefined Algorithms -预定义算法

当使用一个预定义的算法时,例如esSimple()/eaMuPlusLambada()/eaMuCommaLambda()/eaGenerateUpdata(),之前创建的统计目标可以作为算法的属性。

pop, logbook = algorithms.esSimple(pop, toolbox, cxpb = 0.5, mutpb = 0.2, 
ngen = 0, stats = stats, verbose = True)

统计将会在每一次迭代中自动的进行计算。详细参数在优化过程中会打印在屏幕上。一旦算法返回,最终的种群和一个logbook将会返回。在下一节可以看到更详细的信息。

3、Writing Your Own Algorithm

这种情况主要是解决不是直接调用的模块函数,就是函数式自己编写的情况下,我们如何记录结果数据

当编写自己的算法时,包含统计时十分简单的。只需要去在需要的目标上编写统计。例如,在一个给定种群上编写统计需要调用compile()方法完成。

record = stats.compile(pop)
compile--编译 

这些用于编辑函数的属性必须在一个迭代元素中,这样这些key才会被调用。这里,我们的种群(pop)包含了许多个体。统计目标将会在每一个个体上调用key函数获取fitness.values属性的值。这个结果数组的值最终会给到每一个统计函数并且将结果输入到record字典中,每一个key都会与相应的函数相关联。

4、Multi-objective Statistics

正如统计可以通过numpy函数直接进行计算,所有的目标将会通过默认numpy的属性联合在一起。接下来,一个需要明确的事情是每一个axis的操作。这会通过给予axis一个额外的属性作为注册函数达成。

stats = tools.Statistics(key=lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean, axis=0)
stats.register("std", numpy.std, axis=0)
stats.register("min", numpy.min, axis=0)
stats.register("max", numpy.max, axis=0)

5、Logging Data

一旦数据通过统计产生,我们可以使用Logbook对它进行存储。Logbook是用来
按时间顺序排列的条目(如字典)。它会直接兼容数据类型并且返回统计目标,但是不会被数据限制。实际上,任何东西都可以包含在日志的条目中。

logbook = tools.Logbook()
logbook.record(gen=0, evals=30, **record)

6、Some Plotting Sugar

在优化过程中最常用的操作就是在图中显示进化过程。Logbook可以有效地执行这一操作。使用选择方法,我们可以调用需要的数据并且使用matplotlib去绘制图形。

gen = logbook.select("gen")
fit_mins = logbook.chapters["fitness"].select("min")
size_avgs = logbook.chapters["size"].select("avg")import matplotlib.pyplot as pltfig, ax1 = plt.subplots()
line1 = ax1.plot(gen, fit_mins, "b-", label="Minimum Fitness")
ax1.set_xlabel("Generation")
ax1.set_ylabel("Fitness", color="b")
for tl in ax1.get_yticklabels():tl.set_color("b")ax2 = ax1.twinx()
line2 = ax2.plot(gen, size_avgs, "r-", label="Average Size")
ax2.set_ylabel("Size", color="r")
for tl in ax2.get_yticklabels():tl.set_color("r")lns = line1 + line2
labs = [l.get_label() for l in lns]
ax1.legend(lns, labs, loc="center right")plt.show()

相关文章:

DEAP库文档教程五----计算统计

本小结将重点围绕模型在计算统计方面的问题,进行详细的论述 1、Computing Statistics 通常情况下,我们想要在优化过程中编辑数据。Statistic模块可以在任何设计好的目标上改变一些本不可改变的数据。为了达到这个目的,需要使用与工具箱中完…...

新型安卓恶意软件使用Protobuf协议窃取用户数据

近日有研究人员发现,MMRat新型安卓银行恶意软件利用protobuf 数据序列化这种罕见的通信方法入侵设备窃取数据。 趋势科技最早是在2023年6月底首次发现了MMRat,它主要针对东南亚用户,在VirusTotal等反病毒扫描服务中一直未被发现。 虽然研究…...

【AI数字人】如何基于DINet+Openface自训练AI数字人

文章目录 OpenFace环境配置提取特征特征处理DINet推理数据前处理训练frame training stageclip training stage参考DINet训练/推理过程中需要用到OPenFace的人脸数据,所以使用DINet训练定制数字人,需要配置OPenFace和DINet两个项目的环境。我是使用conda创建了一个dinet的虚拟…...

Stable Diffusion 多视图实践

此教程是基于秋叶的webui启动器 1.Stable Diffsuion 使用多视图需要准备一个多角度open pose 图 我给大家提供一个可使用的。 2.需要添加图片到到controlnet当中,不要选择预处理器,选择模型为openpose的模型,然后需要点选同步图片尺寸。 3.然后填写关键字可以参照一下这个…...

【实操干货】如何开始用Qt Widgets编程?(四)

Qt 是目前最先进、最完整的跨平台C开发工具。它不仅完全实现了一次编写,所有平台无差别运行,更提供了几乎所有开发过程中需要用到的工具。如今,Qt已被运用于超过70个行业、数千家企业,支持数百万设备及应用。 在本文中&#xff0…...

解决window安装docker报错问题

第一次打开Docker Desktop后提示错误 试了网上版本都没用,后面发现是电脑没有下载相关虚拟机: 先点击链接下载wsl2,下载后命令行执行:dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /…...

茄子科技面试题

1、RPC的重要组成有哪些? 客户端(Client):发起RPC请求的部分。客户端包含代表远程过程的存根(stub),它提供与本地过程相同的接口。 服务器(Server):接受RPC请…...

postgis数据库导出csv表再导入postgis

1、导出csv表 from settings_Address import * from sqlalchemy import create_engine, MetaData import pandas as pd def create_conn(Postgis_user,Postgis_password,Postgis_host,Postgis_port,dbname_PG):# return create_engine(PostgispyPostgis://{}:{}{}:{}/{}.forma…...

MySQL 特殊字符

文章目录 1.注释符2.字符串符3.反引号4.模式匹配通配符转义符 参考文献 1.注释符 SQL 注释是用来在 SQL 语句中添加对代码的解释说明。SQL 支持两种类型的注释符号。 单行注释:使用两个连续的减号(–)表示。减号后面的内容将被视为注释&…...

Chrome自动升级了,找不到最新版本的webdriver怎么办?

Chrome自动升级了,找不到最新版本的webdriver怎么办? 背景解决办法 背景 我用Selenium开发了Facebook和Linkedin爬虫,有些新需求要调一下,今天启动selenium时有报错,报错如下:selenium.common.exceptions.SessionNotCreatedExce…...

网络编程套接字(3): 简单的TCP网络程序

文章目录 网络编程套接字(3)4. 简单的TCP网络程序4.1 服务端创建(1) 创建套接字(2) 绑定端口(3) 监听(4) 获取新连接(5) 处理读取与写入 4.2 客户端创建(1)连接服务器 4.3 代码编写(1) v1__简单发送消息(2) v2_多进程版本(3) v3_多线程版本(4) v4_线程池版本 网络编程套接字(3)…...

springMVC之拦截器

文章目录 前言一、拦截器的配置二、拦截器的三个抽象方法三、多个拦截器的执行顺序总结 前言 拦截器 一、拦截器的配置 SpringMVC中的拦截器用于拦截控制器方法的执行 SpringMVC中的拦截器需要实现HandlerInterceptor SpringMVC的拦截器必须在SpringMVC的配置文件中进行配置&…...

docker搭建个人网盘和私有仓库Harbor

目录 1、使用mysql:5.7和 owncloud 镜像,构建一个个人网盘 2、安装搭建私有仓库 Harbor 1、使用mysql:5.7和owncloud,构建一个个人网盘 1.拉取mysql:5.6镜像,并且运行mysql容器 [rootnode8 ~]# docker pull mysql:5.7 [rootnode8 ~]# doc…...

智慧排水监测系统,科技助力城市排水治理

城市里,人们每天通过道路通行,人多,路窄,都会拥堵。同样,下雨天,雨水通过雨篦汇集、管道输送,最终排出去,当雨水过大,或者管道过窄,或者管道不通畅&#xff0…...

部署java程序的服务器cpu过高如何排查和解决

1.top命令找到占用CPU高的Java进程PID 2.根据进程ID找到占用CPU高的线程 ps -mp pid -o THREAD,tid | sort -r ps -mp 124682 -o THREAD,tid | sort -r 3.将指定的线程ID输出为16进制格式 printf “%x\n” tid printf "%x\n" 6384 18f0 4.jstack pid |…...

合宙Air724UG LuatOS-Air LVGL API控件--按钮 (Button)

按钮 (Button) 按钮控件,这个就不用多说了,界面的基础控件之一。 示例代码 – 按键回调函数 event_handler function(obj, event) if event lvgl.EVENT_CLICKED then print(“Clicked\n”) elseif event lvgl.EVENT_VALUE_CHANGED then print(“To…...

new/delete与malloc/free的区别

new/delete与malloc/free的区别 new、delete是C中的操作符,而malloc、free是标准库函数。 new 和 delete 是类型安全的,它们能够根据要分配的对象类型进行内存分配和释放,并调用相应的构造函数和析构函数。而 malloc 和 free 则是无类型的&am…...

QT listWidget 中实现元素的自由拖拽

QListWIdget中拖拽元素移动 setMovement(QListView::Movement::Free);setDragEnabled(true); setDragDropMode(DragDropMode::DragDrop); setDefaultDropAction(Qt::DropAction::MoveAction);...

ChatGPT AIGC 完成二八分析柏拉图的制作案例

我们先让ChatGPT来总结一下二八分析柏拉图的好处与优点 同样ChatGPT 也可以帮我们来实现柏拉图的制作。 效果如下: 这样的按年份进行选择的柏拉图使用前端可视化的技术就可以实现。 如HTML,JS,Echarts等,但是代码可以让ChatGPT来做,生成。 在ChatGPT中给它一个Prompt …...

Python 分析HTTP的可靠性

在这篇文章中,我们将介绍如何使用 Python 来分析代理服务提供商的可靠性。代理服务在许多场景中都非常有用,例如突破地理限制、保护隐私和提高网络安全性。然而,并非所有的代理服务提供商都是可靠的。因此,我们将使用 Python 来测…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能

指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...